Планирование Мотивация Управление

Гидродинамические подшипники. Гидродинамический подшипник: особенности применения и принцип работы Гидростатические и гидродинамические подшипники скольжения

Гидродинамический подшипник является машиностроительным узлом, в котором основная нагрузка приходится на тонкий слой изолирующей смывающей жидкости, нагнетаемой при помощи смазываемого вала в конструкцию. Часто изделие называют гидравлическим.

Современные гидродинамические подшипники применяют в различных прецизионных механизмах, особенно, когда обычные роликовые или шариковые разновидности не удовлетворяют требованиям, которые предъявляются к ним для обеспечения работы отдельных узлов или конструкций.

К примеру, использование гидравлических элементов позволяет обеспечить минимальную вибрацию, малый при этом устройства обладают длительным сроком службы. Такие виды подшипников в процессе дальнейших усовершенствований и разработок приобретают все большую конкурентоспособность, поскольку себестоимость их производства постоянно снижается.

В отличии от гидростатических изделий, гидродинамический подшипник имеет несколько иной принцип работы. Если в первом случае рабочее производится посредством специального насоса, то в последнем варианте самосмазывание выполняется при вращении рабочего вала. Следует заметить, что сам по себе эффект самосмазывания происходит только при достижении определенных скоростей вращения вала, которые указываются в паспорте изделия.

В противном случае толщина смазки под валом будет недостаточной, что приведет к увеличению а в итоге вызовет преждевременный износ механизма. Таким образом, чтобы исключить данные ситуации, которые часто возникают, например, при запуске и остановке устройства, имеет смысл использование специального пускового насоса, который будет применяться в описанных переходных режимах.

Гидродинамический подшипник имеет ряд достоинств. Во-первых, изделия отличаются надежностью и простотой конструкции.

Обычно в своем устройстве они состоят из внутреннего и внешнего кольца с тороидальной формой, в местах стыков изделия имеют герметичные уплотнения. Благодаря усовершенствованной конструкции, гидродинамический подшипник практически не имеет затрат по эксплуатации (или они минимальны). Механизм характеризуется длительным периодом службы.

При производстве изделий предъявляемые требования к уровню точности намного ниже, чем при изготовлении шариковых или роликовых видов. Уровень шума от гидравлических устройств значительно ниже, чем звук, исходящий от Изделия производят минимальные вибрации. Благодаря конструктивным особенностям, обладают высокой демпфирующей способностью.

К недостаткам изделий можно отнести их высокую чувствительность к неточностям, возникающим при изготовлении валов. Кроме этого, они обладают значительной потерей энергии.

Гидродинамические подшипники нашли применение в компьютерных устройствах. С их помощью работает жесткий диск, а также вентиляторы охлаждения системного блока. Помимо этого, их используют в они приводят в действие элементы

Распространены два способа создания «поддерживающего » давления:

статический (гидростатический ) и гидродинамический . В соответствии с этим различают гидростатический и гидродинамический подшипники жидкостного трения. В гидростатических подшипниках давление в поддерживающем слое смазочного материала создают насосом, подающим материал в зазор между цапфой и подшипником. Эти подшипники требуют для нормальной работы сложной гидросистемы. Гидродинамические подшипники получили большее распространение. В них смазочный материал следует подавать только в зону низкого давления откуда вращающейся цапфой он нагнетается вниз, образуя клиновой поддерживающий слой. Проходя через узкий участок радиального зазора, часть смазочного материала удаляется в торцовый зазор между цапфой и подшипником. Другая его часть вытекает в торцовый зазор поверх цапфы, охлаждая подшипник. Удельная нагрузка на подшипник p=F r /(ld).

73. Конструкции подшипников скольжения и материалы деталей. Подшипники скольжения состоят из двух основных частей: корпуса и подшипниковой втулки (вкладыша). Применение вкладышей позволяет изготовлять детали корпусов из дешевых материалов и облегчает ремонт. В малогабаритных и неответственных подшипниках вкладыши иногда отсутствуют, их назначение в этом случае выполняют корпуса. Наиболее распространены опоры с неподвижной осью б) и с подвижной осью в) В механизмах используют опоры на центрах и опоры на кернах г, д)Керны изготовляют в форме цилиндрических осей диаметром 0,25...2 мм, их конические концы закругляют по сферической поверхности радиусом = 0,01...0,2 мм. Опоры механизмов и машин условно можно подразделить на автономные и встроенные. Автономные опоры изготовляют по стандартам в разъемном и неразъемном исполнениях. Подшипники с неразъемным корпусом сравнительно просты и дешевы, но сложны при монтаже. Это ограничивает область их использования. Разъемные подшипники широко применяются в различных конструкциях. Он состоит из: корпуса 1 , крышки 2, вкладыша 3, крепежных болтов с гайками 4 и масленки 5. Подшипниковые вкладыши выполняют цилиндрическими без бурта для радиальной нагрузки или с буртом для восприятия осевой и радиальной сил. Их изготовляют неразъемными и разъемными Разъем вкладыша рекомендуется выполнять в плоскости, перпендикулярной радиальной нагрузке., а разъем корпуса - ступенчатым. Уступ в ступенчатом разъеме препятствует поперечному сдвигу крышки относительно корпуса подшипника. Смазывание осуществляют различными смазочными материалами с помощью колпачковых или капельных масленок.

74. Общие сведения Классификация подшипников качения. Подшипники качения являются наиболее распространенным видом опор деталей механизмов и машин. В отличие от подшипников скольжения в них реализовано трение качения между деталями: наружным 1 и внутренним 2 кольцами, телами качения 3 , расположенными между кольцами. Для предохранения тел качения от соприкосновения между собой их отделяют друг от друга сепаратором 4.



Тела качения перемещаются по тщательно обработанным беговым дорожкам А , выполненным на кольцах. Преимущества подшипников качения перед подшипниками скольжения :1)малые осевые габариты, 2)малое сопротивление пуску и вращению, 3)простота обслуживания, 4)низкая стоимость, 5)взаимозаменяемость. Недостатки : 1)большие радиальные габариты и сложный монтаж, 2)меньшая радиальная жесткость,3)низкая долговечность при высоких оборотах (из-за перегрева) и др. Классификация подшипников. 1)По форме тел качения подшипники подразделяют на шариковые и роликовые по форме роликов а)с коротким и и длинными цилиндрическими роликами, б)с коническими в)бочкообразными г)игольчатыми д)и витыми роликами). 2)По направлению воспринимаемых сил подшипники разделяют на: а)радиальные , воспринимающие преимущественно радиальные нагрузки, б)радиально-упорные , воспринимают действие радиальных и осевых нагрузок; в)упорно-радиальные , воспринимают осевую нагрузку при незначительной радиальной нагрузке; г)упорные , воспринимающие только осевые силы По способности самоустанавливаться подшипники подразделяют на не самоустанавливающиеся и самоустанавливающиеся , допускающие поворот оси внутреннего кольца по отношению к оси наружного кольца. По числу рядов тел качения различают подшипники однорядные , двухрядные и четырехрядные . Подшипники одного и того же диаметра отверстия подразделяют на серии : по габаритным размерам наружного диаметра сверхлегкую, особо легкую, легкую, среднюю и тяжелую, а в зависимости от ширины они подразделяются на: особо узкую, узкую, нормальную, широкую, особо широкую.


75. Статическая грузоподъёмность подшипников. Статической грузоподъемностью подшипника называют нагрузку Со (радиальную и осевую), которая вызывает общую остаточную деформацию наиболее нагруженного тела качения. Значения С о для подшипников различных типов и серий даны в справочниках. Если подшипник нагрузить одновременно радиальной F r и осевой F a силами, и принять, что осевая сила равномерно распределена между телами качения, то используя схему нагружения, можем найти величину статической эквивалентной нагрузки по формуле F сэ =x 0 F r +Y 0 F a , где Х 0 и У 0 коэффициенты радиальной и осевой сил. Значения коэффициентов Х о и Y о для подшипников различных типов приведены в справочниках. Для любого подшипника одинаковая статическая эквивалентная нагрузка может быть получена при различных соотношениях сил F r и F a Подшипник подбирают из условия F сэ ≤C 0 если F сэ >F r при F сэ ≤F r принимают F сэ =F r .

76. Динамическая грузоподъемность подшипников . Под динамической грузоподъемностью С подшипников понимают постоянную радиальную нагрузку (в Н), которую подшипник с одним неподвижным кольцом может воспринимать в течение номинальной долговечности в один миллион оборотов. Учитывая условие прочностной надежности подшипника долговечность подшипника можно представить в виде L=(C/F) q ≤L p , где L - номинальная долговечность подшипника (млн. оборотов); С - динамиче­ская грузоподъемность (Н); q - показатель степени кривой усталости подшипника; Lp = 6 - расчетная долговечность подшипника, (млн. оборотов) п - частота вращения кольца, (мин-1); Lh - расчетная долговечность подшипника, (час). Показатель степени q = 3 - для шарикоподшипников и q = 3,33 - для роликоподшипников. Значения динамических грузоподъемностей С для подшипников различных типов и серий приведены в справочниках.

№ 77 Виды изделий тредования к ним. Стадии разработки машин.

Совокупность деталей предназначенных для совместной работы, называют сборочной единицей (узлом ). :подшипник, узел опоры, редуктор и т. п. Несмотря на различие машин, детали и узлы в них в основном одинаковые: различные соединения (резьбовые, сварные, и др.), передачи (зубчатые, винтовые и др.) валы, муфты, и тд. Требования, предъявляемые к изделиям

Работоспособность - одно из важнейших требований критерии: прочностью( сопротивление деталей машин разрушению), жесткостью (способность деталей сопротивляться изменению формы), износостойкостью (способность деталей сопротивляться изнашиванию, т. е. процессу разрушения и отделения материала с поверхности

твердого тела)., вибростойкостью .

СТАДИИРАЗРАБОТКИ МАШИН

Первая стадия - разработка технического задания (ТЗ )- документа, содержащего наименование, основное назначение, технические требования, показатели качества, экономические показатели и специальные требования заказчика к изделию.

Вторая стадия - разработка технического предложения (ТП )- совокупности КД , обосновывающих целесообразность разработки изделия на основе предложений в ТЗ , рассмотрения вариантов решений. ТП утверждается заказчиком и генеральным подрядчиком.

Третья стадия - разработка эскизного проекта (ЭП )-совокупности КД , содержащих принципиальные конструкторские решения, дающих представление об устройстве изделия, принципе действия, размерах и основных параметрах. Сюда входит пояснительная записка с необходимыми расчетами.

Четвертая стадия - разработка технического проекта - совокупности КД - окончательное решение с полным представлением об устройстве изделия. рассматриваются вопросы надежности узлов, соответствие техники безопасности, условиям хранения и транспортирования и т. д.

Пятая стадия - разработка рабочей документации (РД )- совокупности документов, содержащих чертежи что бы по ним можно было изготовлять изделия и контролировать производство и эксплуатацию. На этой стадии разрабатываются оптимальные конструкции деталей.

Принцип работы гидродинамических подшипников . Гидродинамический подшипник представляет собой опору жидкостного трения. Эти подшипники бывают радиальными и упорными. Радиальный подшипник имеет три или че­тыре сегмента (башмака) 1 (рис. 7.6). С помощью гидравлической системы опора заполняется маслом. Под действием силы тяжести невращающийся шпиндель 3 опускается на сегменты. Когда шпиндель приводится во вращение, он своей шероховатой поверхностью увлекает масло в зазоры между ним и сегментами. Конструкция сегмента, в частности смещенное положение его опоры 2 относительно оси симметрии, позволяет ему поворачиваться под действием давления масла, в результате чего образуется клиновый зазор, су­жающийся в направлении вращения шпинделя, В этом зазоре возникает гидро­динамическое давление р, удерживающее шпиндель во взвешенном положе­нии. Если шпиндель вращается на многоклиновых подшипниках с самоустанавливающимися сегментами, охватывающими его равномерно по окружнос­ти, незначительное смещение его из среднего положения под действием внеш­ней нагрузки приводит к перераспределению давления в клиновом зазоре и возникновению результирующей гидродинамической силы, уравновешиваю­щей внешнюю нагрузку.

Гидродинамические опоры рекомендуется применять для шпинделей, вра­щающихся с высокой постоянной или мало изменяющейся частотой и воспри­нимающих небольшую нагрузку, например для шпинделей шлифовальных станков. Достоинства гидродинамических подшипников заключаются в высо­кой точности и долговечности (смешанное трение только в моменты пусков и остановов), недостатки - в сложности конструкции системы питания опор Маслом, в изменении положения оси шпинделя при изменении частоты его вращения.

Масло для гидродинамических подшипников . Обычно применяют мине­ральное масло марки Л (велосит), имеющее коэффициент динамической вяз­кости у. = (4...5)10~ 3 Па-с при температуре 50 С. Масло (1...3 л/мин при давлении 0,1 ...0,2 МПа) подается в подшипник с помощью гидравлической системы, включающей фильтр тонкой очистки и холодильную установку.

Конструктивные исполнения радиальных гидродинамических подшипни­ков . Сегменты подшипников должны иметь возможность самостоятельно изменять свое положение как в плоскости, перпендикулярной к оси шпинде­ля, так и в плоскости, проходящей через ось. Последнее избавляет от возмож­ных высоких кромочных давлений в опоре, сопровождаемых перегревом масла в тонкой граничной пленке и потерей его смазочных свойств. Имеется ряд конструкций подшипников, у которых зазор между валом и сегментами автоматически изменяется в зависимости от нагрузки и частоты вращения шпинделя.


Одна из конструкций - ЛОН-88, разработанная ЭНИМС, представлена на рис. 7.7. Подшипник выполнен в виде отдельного блока, состоящего из двух колец 2, трех сегментов 1 и проставочного кольца 3. Наружная торцовая по­верхность сегментов находится в двухточечном контакте с коническими по­верхностями колец, вследствие чего сегменты имеют возможность устанавли­ваться вдоль оси шпинделя и в направлении его вращения. Проставочное кольцо своими выступами препятствует смещению сегментов по окружности. Изменяя толщину проставочного кольца, можно регулировать рабочий зазор в подшипнике.

Подшипники другой конструкции - ЛОН-34 - с сегментами 1 , устанавли­вающимися в результате поворота на сферических опорах А (рис. 7.8) , допус­кают скорость скольжения до 60 м/с при отсутствии кромочного давления* Опоры сегментов выполнены в виде винтов 2 из закаленной стали с мелкой резьбой. Перемещениями их в радиальном направлении регулируют радиаль­ный зазор в опоре и положение оси шпинделя. Для повышения жесткости за­зоры в резьбовых соединениях опорных штырей с корпусом выбирают гайка­ми 3, С целью уменьшения изнашивания сегментов в моменты пуска и тормо­жения шпинделя они выполнены биметаллическими: на стальную основу спо­собом центробежного литья нанесен слой бронзы Бр ОФ10-0,5 , Бр 0С10-10 или другого антифрикционного материала. Параметр шероховатости Ra рабо­чих поверхностей сегментов должен быть не выше 0,32 мкм, шеек шпинделя - не выше 0,04...0,16 мкм. Размеры сегментов и опорных винтов приведе­ны в табл. 7.1 и 7.2.


Пример конструкции шпиндельного узла . В передней и задней опорах шпиндельного узла шлифовального станка (рис. 7.9) установлены гидродина­мические подшипники 1 типа ЛОН-88. Осевые нагрузки воспринимаются дву­сторонним упорным подшипником, образованным дисками 2 и 4, С ними контактирует бурт 3 шпинделя. Смазочный материал в этот подшипник под­водится через отверстия Б и 5. Вытеканию масла из шпиндельной бабки пре­пятствуют уплотнения щелевого типа. По каналу Г масло из полостей уплотне­ний сливается в корпус бабки.

Конструктивные параметры подшипников. Диаметр D шейки шпинделя выбирают по условиям жесткости. Длина I подшипника для шлифовальных станков - 0,751), для прецизионных токарных и расточных станков - (0,85- 0,9) D. Длина дуги охвата вкладыша (0,6-0,8)1. Диаметральный зазор = 0,003 D. Обычно применяют подшипники с тремя или четырьмя вкладыша­ми.


Расчет гидродинамических радиальных подшипников . Расчет выполняется с целью определить размеры подшипника в зависимости от заданной нагрузоч­ной способности опоры и ее жесткости. Кроме того, определяют потери на тре­ние в опоре.

Ниже изложена методика расчета радиальных гидродинамических подшип­ников с тремя или четырьмя самоустанавливающимися сегментами для опор со скоростями скольжения до 30 м/с [ 67].

Исходные данные: конструктивные параметры подшипника, частота вра­щения шпинделя, наибольшая радиальная нагрузка, требуемая радиальная жесткость опоры.

Нагрузочная способность (Н) одного сегмента при центральном положе­нии шпинделя

где динамическая вязкость масла, Па-с; n -частота вращения шпинделя, об/с; D - диаметр расточки сегментов, мм; В - хорда дуги сегмента, мм; L - длина сегмента, мм; ; расчетный диаметральный зазор, мм.

Под действием результирующей силы шпиндель смещается из начального положения на е миллиметров, и его новое положение характеризуется относи­тельным эксцентриситетом Если результирующая сила направлена по оси опоры сегмента, нагрузочная способность трехсегментного подшипника

Полезная модель относится к узлам и деталям машин, обеспечивающим нормальную эксплуатацию машин и установок, а именно, к подшипникам скольжения для вращательного движения. Заявленное устройство может быть использовано в шпиндельных опорах шлифовальных станков. Технической задачей, на решение которой направлено заявленное устройство, является повышение технологичности гидродинамического подшипника, путем упрощения системы регулировки монтажного зазора между подшипником и валом шпинделя станка. Указанная задача решается за счет того, что гидродинамический подшипник, установленный на валу шпинделя станка, содержит два опорных кольца, соединенных штифтами с установленными между ними прокладкой и тремя опорными самоустанавливающимися вкладышами, каждый из которых содержит сферическую опору. При этом на каждом из опорных колец со стороны их соединения выполнена кольцевая фаска, а каждый из трех опорных самоустанавливающихся вкладышей содержит полусферическую канавку. Техническим результатом, обеспечиваемым указанной совокупностью признаков, является повышение технологичности гидродинамического подшипника, вследствие особенностей предложенной конструкции самоустанавливающихся вкладышей и упрощения регулировки зазора между опорными кольцами, способом подбора толщины прокладки.

Полезная модель относится к узлам и деталям машин, обеспечивающим нормальную эксплуатацию машин и установок, а именно, к подшипникам скольжения для вращательного движения. Заявленное устройство может быть использовано в шпиндельных опорах шлифовальных станков.

Из уровня техники известна конструкция подшипника качения (а.с. SU 1557382, МПК F16C ЗЗ/38, опубл. 15.04.90, бюл. 14), содержащего внутреннее и наружное кольца, размещенные между ними тела качения и разделяющий их сепаратор в виде торцовых шайб с выступами. Свободное пространство между кольцами заполнено твердосмазочным антифрикционным заполнителем.

Недостатком известной конструкции подшипника качения является его низкая рабочая скорость вращения.

Известен гидродинамический радиальный сегментный подшипник скольжения (а.с. 1516640, МПК F16C 17/24, опубл. 23.10.89, бюл. 39), содержащий установленные на опорных элементах самоустанавливающиеся сегменты, объединенные в замкнутый контур жестко связанными с ними упругими элементами, а также систему контроля и управления нагрузкой, включающую датчик и соединенный с ним усилитель.

Недостатком конструкции гидродинамического подшипника является сложность его эксплуатации, связанная с необходимостью ручной настройки монтажного зазора для каждого из вкладышей. Кроме этого, известный гидродинамический подшипник обладает низкой технологичностью вследствие наличия в его конструкции сложных элементов автоматики.

Технической задачей, на решение которой направлено заявленное устройство, является повышение технологичности гидродинамического подшипника, путем упрощения системы регулировки монтажного зазора между подшипником и валом шпинделя станка.

Указанная задача решается за счет того, что гидродинамический подшипник, установленный на валу шпинделя станка, содержит два опорных кольца, соединенных штифтами с установленными между ними прокладкой и тремя самоустанавливающимися вкладышами, каждый из которых содержит сферическую опору. При этом на каждом из опорных колец со стороны их соединения выполнена кольцевая фаска, а каждый из трех самоустанавливающихся вкладышей содержит полусферическую канавку.

Техническим результатом, обеспечиваемым указанной совокупностью признаков, является повышение технологичности гидродинамического подшипника, вследствие особенностей предложенной конструкции самоустанавливающихся вкладышей и упрощения регулировки зазора между опорными кольцами, способом подбора толщины прокладки.

Полезная модель поясняется чертежами, где на фиг. 1 показан гидродинамический подшипник, на фиг. 2 - расположение опорных самоустанавливающихся вкладышей и положение гидродинамического подшипника на шпинделе станка.

Гидродинамический подшипник, установленный на валу шпинделя станка, содержит два опорных кольца 1, соединенных штифтами 2 с установленными между ними прокладкой 3 и тремя самоустанавливающимися вкладышами 4, каждый из которых содержит сферическую опору 5. При этом на каждом из опорных колец со стороны их соединения выполнена кольцевая фаска 6, а каждый из трех самоустанавливающихся вкладышей содержит полусферическую канавку 7.

В каждом из трех самоустанавливающихся вкладышей 4 подшипника выполнены радиусные канавки на глубину h 1 и h 3 , соответственно, что необходимо для шлифования полусферических канавок 7 и обеспечения точной установки сферических опор 5 диаметром D C в самоустанавливающиеся вкладыши на глубину h 2 . Паз радиусом R выполнен в опорных кольцах для закрепления сферических опор 5, и предотвращения их перемещения вдоль фасок в опорных кольцах 1.

Отверстие диаметром d 1 в сферических опорах предназначено для того, чтобы обеспечить полное их погружение в масляную прослойку и исключить взаимное трение колец и вкладышей. Сферические опоры фиксируются двумя опорными кольцами, наружный диаметр которых равен D 1 , а внутренний - D 2 . Между опорными кольцами устанавливается прокладка 3, регулирующая диаметральный зазор на величину . Упомянутые выше конструктивные элементы подшипника соединяют в единый сборочный узел с помощью штифтов 2, диаметром D 3 и длиной L, равной ширине подшипника. Установка штифтов выполняется в отверстия, центр которых находится на расстоянии D Ш от центра подшипника, и на расстоянии t в поперечном сечении от края самоустанавливающегося вкладыша (фиг. 2).

Подшипник устанавливается на вал шпинделя 8, при этом требуемый монтажный зазор определяет расстояние H от верхней точки сферической опоры до вала шпинделя станка, (фиг. 1).

Гидродинамический подшипник работает следующим образом.

Предварительно проводят регулировку требуемой величины диаметрального зазора между опорными кольцами 1 с помощью подбора толщины прокладки 3.

Далее выполняют настройку монтажного зазора между валом шпинделя 8 и самоустанавливающимися вкладышами 4. Настройку осуществляют на валу, диаметр которого равен диаметру вала шпинделя. При помощи прокладки 3 между опорными кольцами 1 осуществляют сдвиг, перемещающий сферические опоры 5 вверх или вниз, в зависимости от требуемой величины монтажного зазора. Предварительная настройка монтажного зазора необходима вследствие сложности его регулировки непосредственно на валу шпинделя станка.

Гидродинамический подшипник – это машиностроительный узел. Основная нагрузка внутри этого элемента приходится на тонкий слой, состоящий из изолирующей смазывающей жидкости. В конструкцию она нагнетается при помощи смазываемого вала. Такие изделия часто называются ещё гидравлическими.

Об особенностях применения механизма

Это достаточно надёжные и простые конструкции, благодаря чему они и получили такое широкое распространение. Состоят они всего из двух элементов: внешнее и внутреннее кольцо тороидальной формы. В местах стыков имеются уплотнения с максимальной герметичностью. Изделия отличаются минимальными эксплуатационными затратами, либо вообще полным их отсутствием. Кроме того, при изготовлении они предъявляют более низкие требования к качеству и точности работы, по сравнению с шарико-, роликоподшипниками. И шума такие подшипники издают меньше, чем обычные подшипники качения. То же самое касается вибраций, их уровень минимален. В ряде случаев такие конструкции обладают неплохими вибродемпфирующими свойствами.

Есть ли недостатки?

Они не обходятся без своих недостатков, как и другие механизмы. Потери энергии у этих деталей бывают значительными. Они обычно зависят от температурных режимов в окружающей среде. Очень сложно рассчитать оптимальный температурный уровень, при котором негативное воздействие сведётся к минимуму. При внештатных ситуациях именно гидродинамические подшипники чаще подвержены авариям, чем другие узлы. Они так же чувствительны к неточности при изготовлении валов, других аксессуаров в системе. Это надо учитывать, ещё проводя первый расчёт.
В процессе эксплуатации есть вероятность утечки рабочей среды. Потому часто устанавливают две и больше цапфы с обеих сторон, чтобы возможные утечки предотвратить.

Немного о принципе действия

Такие подшипники в общем случае делятся на несколько видов:
  1. Гидростатические.
  2. Газо- или гидродинамические. Расчёт у каждой разновидности будет своим.
Гидростатические подшипники отличаются от аналогов тем, что у них внешний насос поддерживает высокое давление внутри. Вода или масло используются в качестве рабочей жидкости. Необходимо нагнетать жидкость внутрь, используя ту самую силу внешнего насоса. Из-за этого есть энергия, которая подводится только к самому подшипнику, для остальных частей в системе она не имеет никакого значения. Но, если бы насоса не было, эта энергия уходила бы на то, чтобы преодолевать силу трения.

Гидродинамический подшипник устроен несколько иначе . Жидкость увлекается в пространство между элементами трения за счёт вращения специального вала, который находится внутри конструкции. Можно сказать, что система сама обеспечивает собственную смазку. Это своеобразная разновидность подшипника скольжения. Масляный клин становится достаточно толстым за счёт следующих элементов:
  • Свободная подача смазки.
  • Достаточная скорость вращения.
  • Геометрия.
Контактное трение исключается полностью, в любых рабочих режимах. Расчёт благодаря этому становится точнее. Эти подшипники всегда устроены так, что вращение вала способствует более глубокому проникновению жидкости внутрь. В другие направления вода уходит так же за счёт вращения этого элемента. Но слой жидкости будет недостаточно толстым, если сам вал вращается недостаточно активно. Это означает, что детали будут слишком активно контактировать друг с другом.
Срок службы подшипника уменьшается, если такое происходит достаточно часто. И энергия уходит в больших количествах. Для предотвращения подобных проблем часто ставят дополнительный внешний насос, либо вторичный подшипник. Они включаются в работу в момент запуска, либо торможения системы. Расчёт это так же берёт во внимание.
Антифрикционные и износостойкие материалы способны уменьшать износ деталей. Иногда валы окружаются не обычными жёсткими втулками, а несколькими упругими лепестками. Используется и разрезное кольцо из пружинящей фольги, на упругой опоре. Такая конструкция помогает равномерно распределить нагрузку по всем деталям.

Какие ошибки механики допускают чаще всего во время ремонта?

  1. Они часто используют тормозные жидкости, параметры которых для этих систем не подходят.
  2. Внутрь механизма во время работы попадает грязь.
  3. Используются смазки или чистящие средства, способные повредить соединение.
  4. Неправильно проводится прокачка системы. Например, много раз нажимают на педаль сцепления во время прокачки. В руководстве по ремонту всегда написано, что это надо делать только один раз.
  5. Попытка прокачки внутренних цилиндров вручную. Из-за этого детали просто ломаются.
  6. Устанавливают новое уплотнения, хотя элементы старого ещё остались внутри. Из-за этого гидравлическая жидкость не может течь в обратном направлении. Что приводит к утечкам, повреждению нового механизма.
  7. Перетягиваются фиксирующие болты.
  8. Неравномерная установка уплотнения. Из-за этого цилиндр начинает наклоняться. Расчёт становится неточным.

Подшипники скольжения и их расчёт

Характер трения – основной параметр, который влияет на расчёт . Трение скольжения бывает трёх основных разновидностей:
  • Жидкостное.
  • Смешанное
  • Граничное.
Сами подшипники бывают радиальными и упорными, это тоже необходимо учитывать. У радиальных подшипников в конструкции всего три или четыре сегмента. Опора заправляется маслом с помощью гидродинамической системы. От этого расчет тоже зависит. Что касается смазки для подшипников, то чаще всего выбирают марку Л. Главное требование к подшипникам – чтобы их сегменты могли свободно менять своё положение, в любом из доступных направлений. Тогда давление внутри опоры не будет слишком большим. Это надо учитывать, проводя расчёт.

Ещё о некоторых особенностях подшипников скольжения

По сравнению с подшипниками качения, подшипники скольжения проще и доступнее в изготовлении. Они обладают бесшумностью, постоянным параметром жёсткости. В режиме любой смазки долгое время работают практически без износа. Расчёт индивидуальный на это не влияет. Но система смазки у них достаточно сложная для обеспечения жидкостного трения, для некоторых это серьёзный недостаток. Кроме того, они требуют обязательного применения цветных металлов. Среди минусов стоит отметить так же увеличенные размеры в осевом направлении, повышенные пусковые моменты.

О конструкциях и материалах

Подшипник скольжения – это корпус и вкладыш, собранные в одной конструкции. Она более простая, чем у тех же подшипников качения. Корпус выпускается разъёмным или цельным. Разъёмные корпуса скрепляются болтами или шпильками. В виде втулки выполняется вкладыш. Если корпус неразъёмный, эта деталь будет выглядеть как две отдельные половинки, верхняя и нижняя. Втулка просто запрессовывается в корпус. Самоустанавливающиеся подшипники используют, если есть вероятность появления повреждений на валу, либо при невозможности точного монтажа механизма. Или используются скольжения.

При изготовлении конструкции скольжения используются следующие материалы:

  • Пластмасса
  • Чугун
  • Бронза
Особенно востребованными стали лёгкие антифрикционные разновидности материалов скольжения. У некоторых моделей вкладыши стоят деревянные. Лучше брать другие материалы. Иногда выпускаются вкладыши, которые могут долгое время работать без смазки. Рабочие поверхности подшипников скольжения обладают различной геометрией. В разных условиях применяются такие формы:
  • Сферические.
  • Плоские.
  • Конические.
  • Цилиндрические. Это тоже важно для тех, кто проводит расчёт.
Сферические и конические формы применяются реже всего. Они удобны лишь при определённых условиях, когда нагрузки направлены на определённую часть механизма. Минимальный износ валов, минимум потерь на трение – главное требование к подшипникам скольжения. Прочности и жёсткости должно хватать для того, чтобы механизм мог работать в самых жёстких условиях. Достаточными должны быть и размеры поверхностей. Их должно хватать для создания эффективной системы по отводу тепла. Тогда возникающее при работе давление будет восприниматься без крайних реакций.