Планирование Мотивация Управление

Политика предприятия по энерго ресурсосбережению образец ворд. Энерго- ресурсосбережение в стройиндустрии. Роль государства в энерго- и ресурсосбережении

Вопросы энергосбережения сегодня становятся все более актуальными, причем не только в пределах нашей страны, но и во всем мире в целом. Ограниченность энергоресурсов природного происхождения, медленные темпы их естественного возобновления и восстановления, и вместе с тем, завышенные потребности современной жизни в этих самих ресурсах, неэкономное их потребление и высокие показатели потерь привели к такому положению дел, что вопросы энергосбережения сегодня стали в числе проблем глобального характера.

Энергетическая эффективность достигается рядом мероприятий, предусмотренных проектом.

Значительные резервы экономии топлива заключены в рациональном архитектурно-строительном проектировании новых общественных зданий.

Для повышения уровня энергетической эффективности строительного производства подрядной строительной организации при разработке проекта производства работ следует предусматривать энергосберегающие методы ведения работ на стройплощадке:

Запрещается стоянка автотранспорта при погрузочно-разгрузочных работах с включенным двигателем;

Запрещается оставлять включенными механизмы при технологических перерывах в работе;

При освещении рабочих мест в темное время суток применять энергосберегающие лампы;

Бытовые помещения освещать энергосберегающими лампами;

В ночное время организовать минимально достаточное охранное освещение.

Для каждого здания должны соблюдаться пять принципов:

1)Снижение теплопотерь с обеспечением при этом хорошего микроклимата в помещении;

2)Снижение потребления электроэнергии;

3)Максимальное использование энегрии солнца во время отопительного периода, включая использование солнечного освещения для естественного освещения;

4)Контроль, мониторинг и демонстрация использования энергии, а также обеспечение управления энергообеспечением здания;

5)Обеспечение потребности в остальной энергии за счет возобновляемых источников энергии.

Для снижения теплопотерь в зоне перекрытий выполняются отверстия с заполнением термовкладышами из пенополистерола. В качестве наружного ограждения применяются сборные трехслойные панели. Хорошие теплоизоляционные характеристики панелей позволяют экономить энергию при эксплуатации здания.

Чтобы построить энергоэффективный дом, нужно минимизировать количество слабых мест в его конструкции, подверженных самым большим потерям тепла, - тепловых мостиков. По определению тепловые мостики - это геометрические соединения и связи между элементами, которые обычно создают теплопроводящий обходной путь, где возможны теплопотери, и которых поэтому следует по возможности избегать. Оболочка здания должна быть по возможности непрерывной и монолитной (без пропусков).


В проектируемом здании имеются элементы конструкции, вызывающие большую озабоченность - подвал (используемый для парковки автомобилей) и балконы.

При решении вопроса об изоляции подвала применяется устройство тепловой перегородки на потолке подвала. Во внешней тепловой оболочке устраивают терморазрыв, который перекрывает слой изоляции, которая подходит под нижнюю часть потолка подвала. Для такого терморазрыва используется непрерывный слой изоляционных блоков.

Встроенные конструктивные терморазрывы для балконов поддерживают температуру в помещении на более высоком уровне, что позволяет избежать конденсации и образования плесени. Обычный встроенный конструктивный терморазрыв заменяет бетон между внешним балконом и внутренней плитой изоляционным материалом (пенополистиролом высокого давления с добавлением графита). Армирующие стержни из нержавеющей стали проходят сквозь пенистый материал. При наличии встроенных конструктивных терморазрывов на балконе поддерживается комфорт для жильцов и можно реализовать энергоэффективные решения.

Окна играют важную роль с точки зрения теплопотерь и дневного освещения. Теплопотери через окна следует свести к минимуму путем оптимизации размера и ориентации, остекления и рамы окон. При планировании размещения окон и дверей необходимо учитывать пропускание света и тепла. В проектируемом здании предусмотрена установка энергоэффективных окон с тройным остеклением, которые помогают обеспечить низкие теплопотери и тепловой комфорт даже при отсутствии радиаторов отопления под окнами в жилых домах с низким потреблением энергии.

Для сокращение внутренних потерь тепловой энергии необходимо применять высокоэффективную тепловую изоляцию трубопроводов и технологического оборудования.

Одним из самых эффективных снижения потребления электроэнергии является экономия за счет замены ламп накаливания энергосберегающими светодиодными лампами. Оснастив светодиодными лампами весь дом, можно снизить энергопотребление. Их электропотребление в 10 раз меньшее, чем у ламп накаливания и в 3 раза меньшее, чем у люминисцентных ламп, также следует отметить, что их срок службы около 100000 часов или 11 лет непрерывной работы.

На освещение площадок и подвалов приходится большое потребление энергии. В целях экономии используются следующие методы:

Устройство энергосберегающих или светодиодных светильников;

Подключение к существующим светильникам автоматических датчиков включения освещения. Датчики могут реагировать на недостаточную освещенность и шум, на прохождении человека, а также можно задать освещение на определенный промежуток времени.

Предотвращение нерационального расхода воды воды осуществляется за счет использования счетчиков для подачи воды.

Таким образом, соблюдение вышеизложенных мероприятий позволяет уменьшить затраты энергии на стадии строительства и эксплуатации проектируемого здания.

Эффективность использования топливно-энергетических ресурсов (ТЭР) во многих странах мира с развитой экономикой стала основным направлением государственной энергетической политики. Эта политика осуществляется посредством реализации мер законодательного характера, а также через инвестирование государственных средств в приоритетные энергосберегающие проекты.

Особое значение проблемы энергосбережения приобретают в Республике Беларусь, способной обеспечить себя лишь на 13-15% ТЭР.

19 июня 1998 года в республике был принят Закон «Об энергосбережении», который регулирует отношения, возникающие в процессе деятельности юридических и физических лиц в сфере энергосбережения, и устанавливает правовые основы этих отношений.

Статья 20 указанного закона определяет методы государственного стимулирования пользователей и производителей ТЭР в вопросах энергосбережения. В то же время, наряду с государственной поддержкой появилась необходимость в эффективном привлечении творческого потенциала работников предприятий к вопросам энергосбережения, а также в привлечении собственных средств предприятий, полученных от реализации энергосберегающих проектов, в инвестирование новых программ энергосбережения. Актуальным является также материальное стимулирование участников процесса энергосбережения на предприятии.

Для этих целей на предприятиях в соответствии с постановлением Совета Министров Республики Беларусь от 31 марта 1998 года № 504 «О мерах по экономическому стимулированию деятельности субъектов хозяйствования, направленной на сокращение потребления топливно-энергетических ресурсов и освоение энерго- и ресурсосберегающих технологий» могут создаваться фонды «Энерго- и ресурсосбережение».

Ниже приводятся практические рекомендации по образованию и использованию средств фонда «Энерго- и ресурсосбережение» на предприятии с учетом опыта ряда предприятий республики. Настоящие рекомендации являются вспомогательным материалом для руководителей предприятий и не могут учесть в полной мере организационные особенности, структуру того или иного предприятия. Объем предлагаемых нами документов может быть на конкретном предприятии сокращен или расширен, за исключением обязательных документов государственной отчетности.

1. Нормирование и учет ТЭР - основа создания фонда «Энерго- и ресурсосбережение» на предприятии

В соответствии с Законом Республики Беларусь «Об энергосбережении» нормирование расхода топлива и энергии должно обеспечить на предприятии дос тижение прогрессивных норм расхода.

Технология разработки и утверждения норм расхода ТЭР на предприятии подробно изложена в ряде государственных и ведомственных нормативных актов и в настоящее время является достаточно освоенной энергетиками предприятий.

Утвержденная норма расхода ТЭР на предприятии выполняет несколько функций:

  • - инструмент планирования;
  • - статистическая отчетность по использованию ТЭР;
  • - возможность сравнения использования ТЭР на родственных предприятиях;
  • - стимул технического развития предприятия в результате внедрения прогрессивных норм и др.

На малых предприятиях с бесцеховой структурой производства, как правило, достаточно иметь только общие утвержденные нормы расхода.

На таких предприятиях полезной может быть разработка и внедрение отдельных технологических или агрегатных норм для крупных энергоемких агрегатов.

На средних и крупных предприятиях службами главного энергетика и главного технолога разрабатываются цеховые нормы расхода ТЭР.

Кроме этого, могут быть разработаны и утверждены нормы на отдельные энергоемкие участки цехов: термические, электропечные и другие.

Нормы разрабатываются на основе тщательного обследования технологического цикла с условием возможного использования паспортных возможностей оборудования и его эффективной загрузки. При этом необходимо учитывать затраты энергии на подготовительные процессы, обеспечивающие функционирование основного технологического процесса.

На некоторых предприятиях применяется метод экспертной оценки определения затрат ТЭР на работу технологического оборудования. Суть метода состоит в том, что из технологического оборудования цеха выделяются близкие по свойствам группы, из которых выделяются так называемые «типичные представители». На них проводится техпроцесс под контролем службы главного технолога с участием службы главного энергетика, которая обеспечивает инструментальные замеры расхода ТЭР.

К полученной, как указано выше, технологической норме добавляются затраты на вспомогательные нужды: освещение, вентиляцию, водо- и воздухоснабжение и др., что и составляет цеховую норму расхода ТЭР.

При этом важно на протяжении длительного периода обеспечить одинаковые условия применения цеховых норм, для чего необходимо составить и утвердить «Структуру цеховой нормы расхода ТЭР».

Цеховые нормы расхода ТЭР утверждаются, как правило, главным инженером предприятия. Полезно при утверждении цеховой нормы расхода фиксировать также плановый уровень незавершенного производства цеха.

Для отдельных подразделений предприятия с неустойчивой номенклатурой выпускаемой продукции, осваивающих новые виды изделий, вместо цеховой нормы расхода ТЭР устанавливаются предельные уровни потребления ТЭР, которые также утверждаются главным инженером. Также поступают и со службами управления предприятием, объектами социальной сферы и т.п.

Таким образом, с установлением цеховых норм расхода и предельных уровней потребления появляется возможность делегирования в подразделения предприятия ответственности перед энергоснабжающей организацией за соблюдение режимов энергопотребления в соответствии с действующими договорами. При оплате за потребленную электроэнергию по двухставочному тарифу цехам полезно доводить уровни максимальной потребляемой мощности в «часы пик», а также уровни ограничений, задаваемые энергосистемой. Все это содействует обеспечению управления потреблением ТЭР на предприятии, побуждает подразделения предприятия к рачительному и рациональному использованию энергоресурсов.

На некоторых предприятиях существует практика привлечения к материальной и дисциплинарной ответственности руководителей подразделений и отдельных работников за выявленные случаи нерационального или расточительного использования ТЭР.

Практика поцехового нормирования облегчает эту задачу. По итогам месяца службой главного энергетика делается анализ потребления ТЭР в подразделениях, на основании которого составляется Информация к балансовой комиссии за _____ месяц ________ г.

За допущенные превышения утвержденной нормы расхода ТЭР на выпуск продукции и перерасход энергоресурсов балансовая комиссия принимает решение об уменьшении размера премии ИТР за основные результаты деятельности подразделения и уменьшает размер премии руководителя подразделения.

Естественно, что цеховое нормирование и управление энергопотреблением на предприятии невозможно при отсутствии учета ТЭР по подразделениям. Потребуется установка десятков, а на крупных предприятиях сотен, счетчиков. При этом ручной сбор данных в силу большой трудоемкости следует исключить. В Республике Беларусь имеется хороший опыт использования автоматизированных систем контроля и учета энергоресурсов (АСКУЭ), описанный в журналах «Энергоэффективность» за 1998 год. Такие системы обычно окупаются на предприятии за 1-1,5 года.

Из множества предлагаемых систем АСКУЭ следует отдать предпочтение тем системам, в которых персонал производственных подразделений завода (руководители, операторы энергоемких агрегатов и др.) имеют постоянный доступ к информации о текущем потреблении ТЭР их подразделениями. Наличие такого контроля дает возможность

службе главного энергетика оптимально в более сжатые сроки обнаружить и решить проблему с помощью работников производственных подразделений.

При решении вопросов внутризаводского учета можно обходиться более дешевыми и доступными средствами с хорошей надежностью. Такие средства выпускаются отечественными производителями.

Вопросы нормирования и учета ТЭР на предприятиях нашли отражение в ПСМ РБ от 09.06.1997 № 651, от 02.07.1997 № 819, от 16.10.1998 № 1582, в «Положении о нормировании расхода топлива, тепловой и электрической энергии в народном хозяйстве республики».

2. Реализация программы энергосбережения - важнейший источник пополнения фонда «Энерго- и ресурсосбережение»

В соответствии со статьей 8 Закона «Об энергосбережении» в республике разрабатываются и утверждаются республиканские, отраслевые и региональные программы энергосбережения. Они служат для проведения эффективной целенаправленной государственной политики и координации государственных органов в сфере энергосбережения.

На предприятиях составляются и утверждаются программы энергосбережения - краткосрочные сроком на 1 год и перспективные сроком на 5 лет. Первые используются при разработке норм расхода ТЭР. Одной из основных задач разработки и реализации краткосрочных программ является обеспечение снижения потребления ТЭР на предприятии в соответствии с заданием вышестоящего хозяйственного органа.

Перспективные программы энергосбережения формируются в соответствии с основными целевыми показателями прогноза социально-экономического развития предприятия на соответствующий период. Долгосрочные программы определяют техническую политику энергосбережения на длительный период; их целесообразно составлять после проведения энергетического обследования. Они позволяют главному энергетику заранее провести научно-техническую проработку перспективных тем, определить объемы и источники финансирования. При наличии перспективных программ облегчается работа по разработке годовых программ энергосбережения.

Разработка и утверждение годовых программ заканчивается в сроки, установленные вышестоящей организацией, как правило, за квартал до года, предшествующего их реализации.

В программах энергосбережения должны указываться объемы экономии ТЭР в тоннах условного топлива по каждому мероприятию, срок окупаемости и источники финансирования. В качестве источников финансирования мероприятий по энергосбережению могут быть собственные средства предприятий, льготные кредиты, инновационные фонды отраслевых министерств (концернов), инновационный фонд концерна «Белэнерго» и средства республиканского фонда «Энергосбережение».

При успешном выполнении программы энергосбережения на предприятии создаются условия для создания фонда «Энерго- и ресурсосбережение». Накопленные в фонде средства могут повторно использоваться на реализацию энергосберегающих мероприятий (реинвестирование).

Отчет о выполнении программы энергосбережения и текущих мероприятий по экономии ТЭР осуществляется по форме «№ 1-энергосбережение».

По каждому внедренному мероприятию рекомендуем составлять документ «Акт ввода технического мероприятия по экономии энергоресурсов» с уточненным (окончательным) расчетом экономического эффекта от внедрения. Рекомендуемые формы документов приводятся в приложениях 11, 12, 13.

Для создания указанного фонда на предприятии необходимо провести ряд организационных мероприятий и подготовить необходимые организационно-распорядительные документы. Предлагается следующая схема работы по созданию фонда.

Приказом по предприятию необходимо ввести в действие «Порядок образования и использования средств фонда «Энерго- и ресурсосбережение», утвержденный Минфином, Минэкономики и Госкомэнергосбережением.

Далее необходимо разработать и ввести в действие Положение о фонде «Энерго- и ресурсосбережение». Как правило, этот документ разрабатывается совместно службой главного энергетика и экономическими службами с участием главного бухгалтера предприятий.

Как вариант приводится пример действующего Положения одного из предприятий.

В Положении о фонде необходимо указать источники образования фонда, цели использования его средств. Этим же документом определяются порядок, размеры и условия премирования работников предприятия за внедрение энергосберегающих мероприятий.

Перечисленный пакет документов, с учетом ранее упомянутого постановления Совета Министров от 31.03.1998 № 504, является обычно достаточным для создания фонда на предприятии.

  • - годовая смета доходов и расходов фонда;
  • - ежеквартальный расчет денежных средств для зачисления в фонд на основании квартальных отчетов по использованию ТЭР и внедрению организационно-технических мероприятий (формы № 11-СН и № 1-энергосбережение);
  • - смета расходов средств фонда на следующий квартал, где указываются конкретные направления использования средств фонда; служебная записка главного энергетика главному бухгалтеру о финансировании из фонда определенного вида работ или приобретения оборудования;
  • - отчет по фонду «Энерго- и ресурсосбережение» за определенный период (квартал, год).

Обращаем Ваше внимание на то, что приведенный порядок и документы являются примерными. Беря за основу нормативные акты (постановление СМ РБ № 504, Закон «Об энергосбережении», «Порядок образования и использования средств фонда «Энерго- и ресурсосбережение») и учитывая особенности Вашего предприятия, Вы сможете разработать необходимые документы для создания и функционирования фонда.

Созданный на предприятии фонд позволит:

  • - аккумулировать средства, полученные от внедрения энергоэффективных и ресурсосберегающих мероприятий для повторного их использования на цели энергосбережения;
  • - обеспечить премирование работников предприятия за внедрение энергоэффективных и ресурсосберегающих мероприятий;
  • - финансировать подготовку и повышение квалификации кадров в области энерго- и ресурсосбережения;
  • - укреплять материально-техническую базу службы главного энергетика за счет закупки приборов и техники для проведения энергетических обследований, разработки норм расхода ТЭР, создания и развития систем общезаводского (коммерческого) и поцехового учета ТЭР;
  • - возвращать банкам кредиты, полученные для целей энерго- и ресурсосбережения и уплачивать проценты по ним; - финансировать НИР и ОКР по созданию на предприятиях новой техники и технологии в сфере энерго- и ресурсосбережения.

Наполнение фонда характеризует работу технических и экономических служб предприятия, повышает их самостоятельность в вопросах технического оснащения энергохозяйства, внедрения передовых технологий.

Наличие фонда «Энерго- и ресурсосбережение» на предприятии стимулирует проведение работ по вопросам рационального использования ТЭР, содействует развитию инициативы и творчества работников предприятия.

На некоторых предприятиях для решения той или иной проблемы энерго- и ресурсосбережения формируются временные творческие коллективы (ВТК) или целевые группы, состоящие из ИТР и рабочих, силами которых проводятся конкретные работы со сдачей «под ключ». По окончании работ участникам творческих коллективов выплачивается премия.

Примерный документ при работе временных творческих коллективов приведен в приложении 10.

Опыт показывает, что на предприятиях, где созданы и функционируют фонды «Энерго- и ресурсосбережение» повышается авторитет служб главного энергетика и главного технолога. Работа по энергосбережению становится интересной, целенаправленной и эффективной.

ПОЛОЖЕНИЕ о фонде «Энерго- и ресурсосбережение»

Настоящее положение определяет принципы и порядок отбора мероприятий по ресурсосбережению, финансируемых из фонда, а также условия и порядок премирования за экономию топливно-энергетических, сырьевых и материальных ресурсов.

  • 1. Принцип и порядок отбора мероприятий по энергосбережению, финансируемых из фонда «Энерго- и ресурсосбережение».
  • 1.1. Аккумулирование средств в фонде «Энерго- и ресурсосбережение».

В себестоимость продукции (работ, услуг) в течение года после внедрения энерго- и ресурсосберегающих мероприятий включается стоимость сэкономленных топливно-энергетических ресурсов, сырья и материалов относительно фактического уровня их расходования (при соблюдении установленных норм или лимитов) на единицу продукции (работ, услуг) за год, предшествующий внедрению этих мероприятий.

Топливно-энергетические ресурсы, сырье и материалы, вместо которых используются вторичные материальные ресурсы (отходы производства и потребления), также считаются сэкономленными. В этом случае величина экономии определяется как разность между стоимостью топливно-энергетических ресурсов, сырья и материалов, применяемых до внедрения энерго- и ресурсосберегающих мероприятий, и стоимостью использованных вторичных ресурсов.

1.2. Источники образования фонда «Энерго- и ресурсосбережение».

Источником образования фонда «Энерго- и ресурсосбережение» является фактическая экономия средств (ресурсов) относительно фактического уровня их расходования до внедрения энерго- и ресурсосберегающих мероприятий и технологий, подтвержденная показаниями приборов и данными бухгалтерского учета, государственной статистической отчетностью по форме № 11СН и № 1-энергосбережение.

Приборы в системы учета потребления топливно-энергетических, материальных и сырьевых ресурсов, по данным которых определяется экономия, должны отвечать требованиям, предъявляемым к приборам и системам коммерческого учета. Нормативы расходования сырья и материалов утверждаются в установленном порядке.

Стоимость сэкономленных ресурсов определяется исходя из фактической цены ресурсов в отчетном периоде.

Смета доходов и расходов средств фонда «Энерго- и ресурсосбережение» утверждается руководителем предприятия.

Неиспользованные в текущем году средства фонда «Энерго- и ресурсосбережение» расходуются в последующем году.

Ежеквартально службой главного энергетика производится расчет начислений фонда, в части раздела «Энергосбережение», составленного на основании государственной статистической отчетности по формам № 11-СН и № 1-энергосбережение и утверждается смета расходов на последующий квартал.

1.3. Принципы отбора мероприятий по энергосбережению, финансируемых из фонда «Энерго- и ресурсосбережение».

Финансирование выполнения мероприятий программы по энергосбережению осуществляется из фонда «Энерго- и ресурсосбережение».

Программа по энергосбережению разрабатывается ежегодно и согласовывается с Комитетом по энергоэффективности при Совете Министров Республики Беларусь (основание: постановление Совета Министров Республики Беларусь от 19.06.1998 № 965) по предприятиям с суммарным годовым потреблением ТЭР в пересчете на условное топливо 25 тысяч тонн и выше.

В течение года возможно внесение изменений и дополнений в данную программу по согласованию с главным инженером предприятия.

Основные направления, финансирование которых осуществляется из фонда «Энерго- и ресурсосбережение»:

  • 1.3.1. Разработка и внедрение новых энергосберегающих технологий, материалов, оборудования.
  • 1.3.2. Организация серийного выпуска высокоэффективного энергосберегающего оборудования и материалов.
  • 1.3.3. Оснащение потребителей приборами учета, системами регулирования и модернизация существующих узлов.
  • 1.3.4. Модернизация котельной с использованием паро- и газотурбинных агрегатов.
  • 1.3.5. Повышение уровня использования нетрадиционных и вторичных энергетических ресурсов.
  • 1.3.6. Внедрение частотно регулируемых электроприводов.
  • 1.3.7. Применение для теплотрасс труб с предварительной тепловой изоляцией.
  • 1.3.8. Применение автоматических систем управления освещения и энергоэффективных осветительных устройств.
  • 1.3.9. Увеличение термосопротивления ограждающих конструкций существующих зданий и сооружений объединения.
  • 1.3.10. Оптимизация и наладка энергетических режимов котельной и основного производства.
  • 1.3.11. Управление режимами отпуска тепла.
  • 1.3.12. Проведение энергетического аудита, разработка и экспертиза прогрессивных технически обоснованных норм расхода ресурсов на единицу продукции.
  • 1.3.13. Научно-исследовательские и проектно-конструкторские работы по внедрению новой техники и технологий, обеспечивающие ресурсосбережение в объединении, включая приобретение лицензий.
  • 1.3.14. Подготовка и повышение квалификации по ресурсосбережению.

1.4. Кроме этого средства фонда «Энерго- и ресурсосбережение» используются на следующие цели:

  • - оснащение демонстрационной аппаратурой кабинетов для обучения и семинаров по вопросам энерго- и ресурсосбережения;
  • - укрепление материально-технической базы службы главного энергетика для эксплуатации энергосберегающего оборудования (поверочные стенды, испытательные комплексы, средства измерений и т.п.);
  • - проведение семинаров и выставок по вопросам энерго- и ресурсосбережения;
  • - возврат банкам полученных на цели энерго- и ресурсосбережения кредитов и уплату процентов за пользование ими;
  • - премирование работников за внедрение энерго- и ресурсосберегающих мероприятий.
  • 2. Порядок, размеры и условия премирования.
  • 2.1. Из средств фонда «Энерго- и ресурсосбережение», образованного в соответствии с Порядком, утвержденным в апреле 1998 г. Минэкономики, Минфином, Госкомэнергосбережением, Государственным налоговым комитетом Республики Беларусь (приказ по предприятию от _______ № ____________), материальному стимулированию в первую очередь подлежат службы и сотрудники, организующие работы по энергосбережению, производственные подразделения, которые непосредственно используют котельно-печное топливо, тепловую и электрическую энергию, а также отдельные работники, обеспечивающие разработку и внедрение энерго- и ресурсосберегающих мероприятий.
  • 2.2. На премирование может быть использовано до 50 процентов полученной экономии денежных средств. В случае использования на осуществление мероприятий по энергосбережению средств инновационных фондов, предназначенных для долевого участия в финансировании работ по энергосбережению или республиканского фонда «Энергосбережение», на премирование может быть использовано не более 30 процентов полученной экономии финансовых средств.
  • 2.3. Премирование коллектива предприятия из средств фонда «Энерго- и ресурсосбережение» производится при условии выполнения удельных норм расхода ТЭР на единицу продукции (работ, услуг).
  • 2.4. При наличии у предприятия задолженности по платежам за полученные льготные кредиты на цели энерго- и ресурсосбережения, премирование не производится.
  • 2.5. Решение по конкретному размеру средств, направляемых на премирование, и распределение ее по подразделениям принимает руководитель предприятия. Отвечает за подготовку приказа служба главного энергетика.
  • 2.6. Основанием для подготовки приказа и принятия решения о премировании являются квартальные отчеты об объемах экономии топливно-энергетических, сырьевых и материальных ресурсов, сумм перечислений в фонд «Энерго- и ресурсосбережение» и направления их расходования.
  • 2.7. Премирование осуществляется в пределах сумм, предусмотренных на эти цели сметой фонда «Энерго- и ресурсосбережение».
  • 2.8. Перечень подразделений, которым выделяется премия за экономию ТЭР, определяется по результатам их работы за квартал на основании отчетов о внедрении энерго- и ресурсосберегающих мероприятий. Перечень премируемых работников и размеры их премирования устанавливаются руководителями подразделений по согласованию со службой главного энергетика.
  • 2.9. Не выплачивается премия полностью или частично работникам или подразделениям, допустившим случаи нерационального расточительного расхода ТЭР, а также аварии или брак в работе, нарушение техпроцесса и производственных инструкций в отчетном периоде.

Энерго-ресурсосбережение в заводской технологии – это комплексное понятие технического развития любого промышленного предприятия в направлении создания энергоэффективных, ресурсосберегающих и интенсивных технологий.

ЗАО Научно-технический центр «ЭТЭКА» осуществляет комплексный энергоменеджмент предприятий сборного железобетонаот энергоаудита (более 80 предприятий) до внедрения энергосберегающих проектов.
В настоящее время заводы сборного железобетона относятся к числу высокоэнергоёмких предприятий с годовым потреблением топлива от 8 до 20 и более тыс. тонн условного топлива в зависимости от производственной мощности (50–200 тыс.м 3 бетона в год).
Результаты энергетического обследования заводов ЖБИ, даже с относительно хорошей энергоэффективностью, позволили выявить достаточно высокие резервы энергосбережения 20–30% в технологи и 10–20% в системе хозяйственнобытового теплопотребления.
Резервы энергосбережения высокие. Чтобы снизить непроизводительные энергозатраты и повысить энергоэффективность существующего технологического оборудования достаточно перейти на энергетически нормализованную технологию с управляемыми потоками потребления и производства тепловой энергии.
Каждое предприятие должно быть введено в нормальное естественное состояние постоянного энергосбережения.

Стартовой позицией такого состояния предприятия является комлексный энергоаудит.

Два типа таких проектов предлагает НТЦ «ЭТЭКА» предприятиям после их энергетического обследования и экономического обоснования решений.
Первый тип проекта - оптимизация энергоёмких технологических и общезаводских процессов при существующей централизованной системы теплоснабжения. Этот тип проекта экономически выгоден для заводов с растущей или стабильной производственной мощностью.
На примере Кунцевского комбината ЖБИ-9 данным проектом были решены следующие задачи:
– реконструкция и усовершенствование систем технологического теплоснабжения;
– внедрение энергоэффективных тепловых режимов и согласование производства и потребления тепловой энергии;
– автоматизация учета и потребления тепловой энергии и регистрации параметров и характеристик тепловой обработки бетона.

Результативность проекта, реализованного на заводе в 1995 г., оценивается снижением технологических энергозатрат на 20–25%.
Второй тип проекта - энергосберегающие системы децентрализованного энергоснабжения заводских потребителей тепловой энергии.
Этот тип проекта экономически выгоден для заводов с падающей, нестабильной производственной мощностью или в случае использования стороннего поставщика тепловой энергии. В этих случаях технологические тепловые установки целесообразно переводить на автономные источники энергии с реализацией энергоэффективных автоматизированных тепловых режимов.

Объектами эффективного применения данного проекта являются московские заводы ЭЗОИС (экспериментальный завод объемных инженерных сооружений) и ЗАО «Связьстройдеталь», где осуществлено автономное теплоснабжение камер тепловой обработки изделий на основе:
– дизельных теплогенераторов – ЭЗОИС (камеры полигона);
– электротермии – ЗАО «Связьстройдеталь» (камеры цеховые).
Технологическая энергоёмкость по расходу топлива была сокращена в 2 раза.

Децентрализация систем технологического теплоснабжения – наиболее результативный путь энергосбережения.
Основная доля энергосбережения, закладываемого в энергосберегающие проекты, заключена в оптимизации технологического теплопотребления, т.е. в конструктивном, технологическом и энергетическом совершенствовании тепловых агрегатов с централизованным или автономным энергоснабжением.

Примеры:
1. В системе централизованного традиционного пароснабжения туннельных камер целесообразно глухие паровые регистры заменить на управляемые распределители острого пара, размещаемые под вагонетками. Достигается высокий эффект энерго- и ресурсосбережения. Повышается эффективность использования энергии пара, агрегатная энергоёмкость не превышает 0,1 Гкал/м 3 , технологическая заводская мощность выработки пара сокращается почти в 2 раза, снижается агрегатная металлоёмкость, повышается надежность управления и регулирования, удобство монтажных работ и эксплуатации оборудования. Такая схема пароснабжения туннельных камер внедрена на Краснопресненском ДСК (фирма НПКП «ТТ») и внедряется на Алексинском предприятии ДОАО «КЖИ-480».
2. Примером эффективной децентрализации технологического энергоснабжения является автономная электротермия камерная или стендовая в заводской технологии тепловой обработки бетона.
Камерная автоматизированная электротермия на основе специальных панельных нагревателей внедрена НТЦ «ЭТЭКА» более чем на 10 предприятиях за последние 5 лет. Энергоёмкость процесса в сравнении с традиционным паропрогревом по условному топливу сокращается в 2–3 раза. Энергоэффективные мягкие тепловые режимы обеспечивают требуемое качество как легкого, так и тяжелого бетона.
Показательным примером стендовой электротермии может служить технология тепловой обработки железобетонных труб, разработанная НТЦ «ЭТЭКА» для московского завода ЖБИ-23 в 1998 г. Энергоёмкость метода составляет 65 кВт.ч/м 3 , что по расходу топлива в 2,5 раза ниже, чем при использовании пара. Стоимость энергозатрат сокращается на 15–20%.
3. Высокоэнергозатратным на заводах сборного железобетона является процесс подогрева инертных материалов в зимнее время. Нормализовать данный процесс позволяют предлагаемые НТЦ «ЭТЭКА» автоматизированные системы подогрева заполнителей на основе использования глухих регистров и импульсов острого пара с централизованной или автономной его выработкой. Такая система разработана и внедряется в настоящее время на Московском заводе ЖБИ-10.
4. Заметное сокращение хозбытовых энергозатрат достигается при замене применяемого еще на заводах парового отопления на водяное. Это мероприятие, реализованное на АО «ЭЗОИС», позволило снизить тепловую мощность на отопление в 2 раза.
5. Нередко, по результатам энергетического обследования, целесообразно отдельные по назначению или отдаленности помещения переводить на автономные системы отопления газовые или электрические. Объектом использования электрического автономного лучевого отопления является московское предприятие «Амба».

Организационно-финансовые механизмы создания энергоэффективного производста строительных материалов и изделий могут быть различными и решаться как на уровне предприятий, так и в рамках региональных и федеральных программ.
Есть положительный опыт реализации энергосберегающих программ и проектов на регинально-отраслевом уровне.

В настоящее время энергосбережение - одна из приоритетных задач. Это связано с дефицитом основных энергоресурсов, возрастающей стоимостью их добычи, а также с глобальными экологическими проблемами.

Экономия энергии - это эффективное использование энергоресурсов за счет применения инновационных решений, которые осуществимы технически, обоснованы экономически, приемлемы с экологической и социальной точек зрения, не изменяют привычного образа жизни.

Энергосбережение в любой сфере сводится по существу к снижению бесполезных потерь энергии. Анализ потерь в сфере производства, распределения и потребления электроэнергии показывает, что большая часть потерь - до 90% - приходится на сферу энергопотребления, тогда как потери при передаче электроэнергии составляют лишь 9-10%. Поэтому основные усилия по энергосбережению сконцентрированы именно в сфере потребления электроэнергии.

В последние годы создание эффективных технологий с минимальным электропотреблением становится приоритетными. Это значит, что только затраченная энергия является главной компонентой при определении эффективности, после всего комплекса теплофизических, микробиологических, биохимических и коллоидных процессов, связанных с производством хлебобулочных изделий, который завершаемых выпечкой.

Печные агрегаты - ведущее оборудование в поточных линиях по выработке хлебных изделий, правильный выбор конструкции печи имеет большое значение для успешной работы хлебопекарного предприятия, так как ее производительность, эксплуатационная надежность и энергетические характеристики определяют производственную мощность и экономические показатели работы.

Традиционная выпечка хлебобулочных изделий производится в специальных хлебопекарных печах, в которых теплота к выпекаемой тестовой заготовке (ВТЗ) может подаваться разными способами:

  • - способы, при которых теплота к ВТЗ подается извне;
  • - способы, при которых тепло генерируется по всей массе ВТЗ;
  • - способы с комбинированным подводом теплоты к ВТЗ.

К первой группе способов относятся радиационно-конвективная выпечка в обычных хлебопекарных печах, выпечка в печах с генераторами коротковолнового инфракрасного (ИК) излучения, в замкнутых камерах в атмосфере пара (насыщенного или сначала насыщенного, а затем перегретого)

Ко второй группе относятся выпечка с применением электроконтактного (ЭК) нагрева, в электромагнитном поле высокой частоты (ВЧ) и сверхвысокой частоты (СВЧ).

Для реализации комбинированного подвода теплоты к ВТЗ используют сначала ИК, потом ВЧ (или СВЧ); сначала ЭК, потом ИК; сначала ВЧ (или СВЧ), потом ИК. В связи с этим, необходимо произвести замену старого оборудования, новым, более производительным с меньшими затратами потребляемой энергии.

Наиболее яркие примеры технологий энергосбережения:

  • 1. Замена ламп накаливания на современные энергосберегающие лампы. Эффективность метода - экономия 60-80% потребляемой на цели освещения электроэнергии. Энергосберегающий эффект - до 10 % об всего потребления электроэнергии.
  • 2. Замена электрообогревателей на теплонакопители. Теплонакопитель - это электроотопительный прибор, работающий по принципу аккумуляции тепла. Он потребляет энергию только ночью, а отдает тепло равномерно круглые сутки. Теплонакопитель обладает современным дизайном и гармонично вписывается в любой интерьер. Теплонакопители устанавливаются непосредственно в тех помещениях, которые необходимо отапливать. Преимущества теплонакопителя:
    • - Небольшие габаритные размеры;
    • - При изготовлении использованы экологически чистые материалы;
    • - Высокий уровень термобезопасности и защиты от поражения электрическим током;
    • - Отлично вписывается в любой интерьер;
    • - Низкий уровень шума;
    • - Установка в минимальные сроки;
  • 3. Сокращение потерь электроэнергии. Для перемещения электрической энергии от мест производства до мест потребления не используются другие ресурсы, используется часть самой передаваемой энергии, поэтому ее потери неизбежны, задача состоит в определении их экономически обоснованного уровня. Снижение потерь электроэнергии - одна из задач энергосбережения.
  • 4. Системы автоматического управления наружным и уличным освещением.
  • 5. Зонные тарифы и установка двухтарифных счетчиков электроэнергии. Установка электросчетчиков это не технология энергосбережения, а мера стимулирования потребителя к экономии электрической энергии. Для потребителя двухтарифный учет выгоден тем, что в позднее время суток электрическая энергия более дешевая. Для энергосистемы работа потребителей в ночные часы выгодна тем, что сглаживается график суточной нагрузки.

По оценке отечественных и зарубежных специалистов, одним из основных направлений улучшения экологической обстановки в мире и сохранения здоровья населения является снижение уровня потребления природных энергетических ресурсов.

Рассмотрим значение этого вопроса на примере жилищно-строительной сферы ¾ одного из главных потребителей энергии как у нас в России, так и за рубежом. В России на нужды жилищно-строительного комплекса расходуется в год почти 240 млн т условного топлива, что составляет 20% всех потребляемых в стране топливо-энергетических ресурсов. Поэтому в условиях нарастающего в мире энергетического кризиса и роста стоимости энергоносителей снижение энергопотребления полностью отвечает принципам устойчивого развития, т. е. стратегии экологически устойчивого (самоподдерживающегося) социально-экономического развития.

Энергосбережение предусматривает крайне экономное расходование энергетических ресурсов. Не случайно поэтому на Конференции ООН в Рио-де-Жанейро (1992) и последующих саммитах особое внимание обращалось на всемирное сбережение энергии и максимально эффективное ее использование.

То, что энергосбережение является магистральным путем устойчивого развития общества, объясняется несколькими причинами. Во-первых, исчерпаемостью (конечностью) органических природных энергетических ресурсов. Во-вторых, резким повышением стоимости природных энергоресурсов. В-третьих, рост энергопотребления сопровождается значительным усилением негативного антропогенного воздействия на естественные экологические системы и природные комплексы.

Экономически развитые страны Европы, а также США, Япония и другие страны повышенное внимание к проблемам энергосбережения стали уделять после мирового энергетического кризиса в 70-е годы. Приоритетной была признана концепция, направленная на энергосбережение, а не на все возрастающее производство новых энергоресурсов. В результате реализации этой программы к середине 90-х годов годовой расход энергии в указанных странах в среднем был снижен на 30-40%.

В связи с резким удорожанием энергии организационные процессы по энергосбережению начались и у нас в России. Энергосбережение официально было признано главным направлением в энергетической стратегии страны. В январе 1998 г. Правительство России утвердило Федеральную целевую программу «Энергосбережение России на 1998-2005 годы». Несколько ранее, 9 июля 1997 г. правительством было принято постановление «О повышении эффективности использования энергетических ресурсов… предприятиями бюджетной сферы». Согласно решению Минстроя Российской Федерации от 11 августа 1995 г. «О принятии изменений № 3 в СНиП II-3-79 «Строительная теплотехника» в целях энергосбережения значительно повышены требования к термическому сопротивлению ограждающих конструкций зданий.

В отечественном жилищно-строительном комплексе используются несколько видов энергоносителей: органическое топливо, электроэнергия и теплоэнергия. Существенные потери энергии наблюдаются на всех стадиях производства работ: от транспортировки топлива до его использования в строительных и жилищно-бытовых целях. Например, устаревшая технология центрального теплоснабжения, используемая в жилищно-бытовом секторе, приводит к значительным потерям энергоносителей.

Б. А. Пермяков (2000), анализируя потери энергии в строительной отрасли, считает, что один из крупнейших потребителей газа ¾ промышленность строительных материалов еще слабо использует неограниченные возможности энергосбережения. Так, например, коэффициент полезного действия (КПД) заводов по производству стекла часто не превышает 35-40%, на кирпичных заводах и предприятиях по производству керамических изделий потери теплоты в сушильных установках достигают 52%, а в печи ¾ 63%. Огромное количество теплоты уходит вместе с отходящими газами в окружающую среду при получении цементного клинкера по технологии мокрого способа и т. д.

И хотя в настоящее время практически для всех видов производств строительного профиля разработаны энергосберегающие, теплоутилизирующие установки и приняты другие теплозащитные меры, уровень энергоэффективности предприятий строительной отрасли и жилищно-коммунального хозяйства у нас в стране значительно ниже зарубежного.

Мировая практика развития индустриальных стран показывает, что потребление энергии только в жилищном секторе может быть сокращено по крайней мере в 2 раза, если внедрять новейшие технологии производства и эксплуатации материалов и оборудования.

К основным факторам, определяющим непроизводительные потери энергии в строительной сфере, специалисты относят:

¨ ориентацию строительной индустрии и промышленности строительных материалов на преимущественный выпуск и использование энергоемких материалов (кирпич, керамзитобетон и др.);

¨ применение ограждающих конструкций зданий с низким уровнем теплозащиты;

¨ несовершенство технических систем теплоснабжения и инженерного оборудования зданий;

¨ неэффективное использование градостроительных приемов, объемно-планировочных и конструктивных решений;

¨ недостаточное развитие нетрадиционных систем энергообеспечения.

Переход к энергосберегающему производству требует не только реформирования экономических отношений и совершенствования технологий, но и изменения всего образа жизни, развития нового мышления. Следует постоянно помнить, что с учетом нынешней экологической обстановки в мире, альтернативы энерго- и ресурсосберегающим технологиям как в мире, так и в нашей стране не существует.

Введение новых российских теплотехнических требований поставило перед проектировщиками и строителями ряд сложных задач, требующих безотлагательного их решения. Главным направлением экологичного энергопотребления в сфере строительства и эксплуатации зданий и сооружений академик РААСН С. Н. Булгаков (1999) считает осуществление полного комплекса энергосберегающих мероприятий: градостроительных, архитектурно-планировочных, конструктивных, инженерных и эксплуатационных. При этом, по его мнению, удельная доля энергосбережения за счет совершенствования градостроительных решений должна составлять 8-10%, архитектурно-планировочных ¾ до 15%, конструктивных систем ¾ до 25%, инженерных систем ¾ до 30%, технологии эксплуатации (включая установку приборов учета, контроля и регулирования тепло- и электропотребления) ¾ до 20%.

Энергосберегающие градостроительные решения, по мнению С. Н. Булгакова и других специалистов, должны включать:

1) установление моратория на расширение границ городов в течение 20-30 лет с целью более рационального использования городских магистральных теплопроводов и других энергосистем;

2) включение в генпланы, программы и бизнес-планы застройки жилых кварталов мероприятий по ликвидации сквозных ветрообразующих пространств;

3) организацию замкнутых дворовых и внутриквартальных территорий;

4) использование естественной теплоты Земли и развитие подземной урбанизации с целью экономии энергоресурсов.

В целях энергосбережения необходимо также правильное размещение и взаиморасположение зданий и жилых комплексов, использование защитных свойств рельефа и т. д.

К эффективным решениям в области энергосберегающего архитектурно-планировочного направления относят строительство ширококорпусных жилых домов с сокращением удельной площади ограждающих конструкций на 1 м 2 площади жилья, возведение мансардных этажей на существующих зданиях для предотвращения сверхнормативных потерь тепла через покрытия и др. (рис. 21.1).

Рис. 21.1. Устройство мансард из объемных блок-комнат
с повышенными теплозащитными свойствами:
а, б ¾ общий вид дома до и после реконструкции; в ¾ план мансарды

При архитектурном проектировании жилых домов с целью сбережения энергии прибегают также к таким мерам, как упрощение конфигурации домов, оптимальная ориентация их по ветру и по солнцу, оптимизация внутренней планировки и т. д.

Весомый вклад в энергосбережение в строительной сфере могут внести оптимальные конструктивные системы, применяемые при возведении и эксплуатации зданий. Известно, что при действующей практике проектирования и строительства более 60% тепла уходит через ограждающие конструкции: внешние стены, потолок, крышу, окна, двери и фундамент. Поэтому основной резерв теплосбережения кроется в надежной теплоизоляции всего корпуса жилого дома.

Самый трудоемкий процесс ¾ утепление стен , ранее достигалось либо увеличением их толщины, либо использованием материалов с большим теплосопротивлением. Однако для удовлетворения новых требований по теплозащите кирпичные стены в центральных районах России нужно было бы проектировать толщиной не менее 1 м. Поэтому с учетом повышенных требований к теплоэффективности и к сбережению ресурсов, основным способом снижения теплопотерь становится утепление стен с помощью новых эффективных материалов с теплосопротивлением R от 0,19 до 0,42 на 1 см (табл. 21.1).

Следует отметить, что в России на душу населения производится теплоизоляционных материалов в несколько раз меньше, чем в других экономически развитых странах. Объем выпуска этих материалов на 1000 жителей составляет в Японии ¾ 350 м 3 , Финляндии ¾ 416 м 3 , США ¾ 496 м 3 , в России ¾ 120 м 3 . К сожалению, в нашей стране практически не производятся ценнейшие утеплители из базальта и вермикулита. Недостаточно используются весьма перспективные отечественные материалы на основе вспученного перлита, геокар на основе торфа, тизол на основе гипса и др.

В различных странах, в том числе и в России, при утеплении наружных стен крупнопанельных домов широко используется многослойная теплоизоляционная система (МТИС) «мокрого» типа. Академическим институтом инвестиционно-строительных технологий РААСН для всех климатических поясов России разработан сухой способ утепления наружных стен.

Теплоэффективная архитектура дома немыслима без увеличения сопротивления теплопередачи окон, так как через них проходит от 20 до 70% всех потерь через ограждающие конструкции. При этом имеют значение типы остекления, виды остекленных пространств, типы теплоизоляции остекления. Стандартные конструкции окон, выпускаемые многими зарубежными фирмами, характеризуются полной герметичностью и жесткой рамой, двумя – тремя слоями стекла с расстоянием между ними 8-12 мм и заменой воздуха между стеклами на инертный газ (аргон), либо вакуум.

Как считают многие специалисты, существующие на сегодня в России повышенные нормативные теплозащитные требования могут быть выполнены лишь при использовании оконного заполнения из древесины и стеклопластика с тройным остеклением, либо специльных стеклопакетов с двойным слоем пленки.

Для снижения потерь тепла перспективно также использование окон с теплоотражающими стеклами. Однако во всех случаях максимально возможная величина теплосопротивления окон будет ниже теплосопротивления стен, поэтому рекомендуется использовать дополнительные теплозащитные экраны: ставни, шторы, занавески и др.

В районах с холодным климатом через фундамент здания теряется от 20 до 30% тепла от общих потерь через ограждающие конструкции. Для снижения этих потерь необходима тщательная теплоизоляция фундамента вместе с мероприятиями по водоотведению, парозащите и достаточной вентиляции подвальных помещений. Наибольший теплозащитный эффект дает теплоизоляция фундаментов с внешней стороны.

Энергосберегающие инженерные системы ¾ энергоисточники, оборудование, контрольно-измерительные приборы и др., по оценке специалистов, позволяют сократить расход тепла на отопление и нагрев воздуха на 25-30%. Основные составляющие этого направления: использование высокопроизводительного котельного оборудования и повышение его КПД; устранение теплопотерь в системах централизованного теплоснабжения; переход на автономные системы горячего водоснабжения с использованием газовых или электронагревателей; введение поквартирной системы отопления; установка терморегулирующей аппаратуры для регулирования обогрева жилых зданий в зимний и осенне-весенний периоды, в дневное и ночное время и т. д.

В аналитическом обзоре современных проблем экологичного энергопотребления (Аврорин и др., 1997) в числе других мер по сбережению энергии при проектировании и строительстве жилых зданий и сооружений названы:

¨ энергосберегающий образ жизни; обучение энергосберегающему проектированию и строительству;

¨ использование искусственной вентиляции с рекуперацией тепла и уменьшением неконтролируемого воздухообмена;

¨ сбережение электроэнергии на освещение с помощью новых типов светильников (в основном люминесцентных ламп) и использование более эффективных холодильников, телевизоров и др.;

¨ использование строительных материалов с минимальной затратой энергии на их добычу и транспортировку;

¨ использование строительной техники без тяжелых энергоемких строительных машин и оборудования;

¨ рациональная организация строительных работ и сокращение сроков строительства;

¨ компьютерное математическое моделирование, оптимизация всех теплозащитных характеристик и контроль за работой инженерных систем.

Как справедливо отмечают авторы аналитического обзора, правильное соотношение характеристик дома является ключевым в вопросах сбережения энергии. «Мы можем сколько угодно утеплять стены, но не получим желаемого эффекта, если не предпримем меры, предотвращающие неконтролируемый обмен воздухом с внешней средой, или не утеплим в достаточной мере окна и двери».

В уже существующей жилой застройке в первую очередь экологическое энергопотребление следует начинать с проведения энергетического аудита, совершенствования инженерного оборудования и теплоизоляции корпусов жилых домов, установки приборов автоматического регулирования отпуска тепла.

Основные энергосберегающие мероприятия при проектировании, строительстве и эксплуатации жилых зданий и сооружений, рассмотренные выше, в обобщенной форме отражены на рис. 21.2.

Резервы строительного комплекса в области экологичного энергопотребления огромны. В последние годы в нашей стране намечается повышение эффективности использования топливно-энергетических ресурсов, чему в немалой степени способствовали принятые законодательные и нормативные документы в области энергосбережения.

Значительное сбережение энергоресурсов в жилищно-строительной сфере может быть достигнуто и с помощью строительства заглубленных жилых зданий, которые принято называть энергосберегающими .

В истории использования подземного пространства в энергетических целях выделяют три этапа: первый ¾ приспособление человеком естественных и искусственно созданных им пещер и других подземных выработок для защиты от неблагоприятного погодного воздействия, второй ¾ строительство отдельных зданий и единичных «подземных городов», не требующих при эксплуатации значительных энергозатрат; третий ¾ в условиях энергетического и экологического кризиса массовое строительство заглубленных зданий, позволяющих экономить энергоресурсы при их эксплуатации и в наименьшей степени загрязнять окружающую среду.

Экологический аспект этой проблемы ярко очерчен в работе Р. Стерлинга, Дж. Кармоди и др. (1983), подчеркнувших, что «человек всегда обращался к земле, чтобы защититься от воздействия неблагоприятных и экстремальных климатических условий. Лишь исторически непродолжительная эра доступного и дешевого топлива позволила строить дома, не зависящие от климатических условий, и снабжать эти дома энергией… Теперь, когда количество природного топлива сокращено, а цены на него быстро растут, настало время пересмотреть взгляды на те возможности, которые предлагает нам земля.

При имеющихся в нашем распоряжении конструкциях нет необходимости возвращаться к пещерам. Цель строительства заглубленных жилищ ¾ поддержать или улучшить взаимоотношение их с окружающей средой; используя землю как одеяло, укрыть здание со всех сторон, земля защитит его как барьер от ветра, холода, нежелательной инфильтрации осадков и будет препятствовать потерям тепла».

Энергосберегающие заглубленные здания по глубине заложения подразделяют на полузаглубленные (отвальные), заглубленные (мелкого и глубокого заложения) и врезанные в склоны (рис. 21.3, Швецов, 1994), а по характеру объемно-планировочного решения на возвышающиеся, врезанные в крутые откосы, здания с внутренними двориками и здания сквозного типа.

Рис. 21.3. Типы заглубленных зданий в зависимости от степени заглубления:
а ¾ полузаглубленные; б ¾ заглубленные; в ¾ врезанные в склоны

По К. К. Швецову (1994), необходимый эффект снижения энергозатрат при эксплуатации заглубленных зданий может быть достигнут лишь при соблюдении ряда требований, касающихся выбора места для строительства, определения типа здания и глубины его заложения, размещения на участке и ориентации, наличия соответствующего инженерного оборудования и т. д.

Эффективность снижения энергопотребления во многом будет определяться защитной толщей грунта (обсыпкой), а также компактностью планировочных решений (предпочтительнее кубическая и близкие к ней формы зданий), конструктивными решениями теплоизоляции и гидроизоляции.

Поскольку заглубленные жилые здания возводят только с условием их естественного освещения и инсолирования, их не строят более одного – двух этажей. Определенный эффект в снижении энергопотребления в этих зданиях может быть достигнут при использовании солнечной энергии (активные и пассивные гелиосистемы) и других нетрадиционных источников энергии.

Участки земной коры, а точнее подземное пространство, пригодное для размещения объектов различного назначения, с градостроительных позиций рассматривалось нами выше. Помимо эколого-градостроительных выгод освоение подземного пространства позволяет значительно сократить затраты энергоресурсов при эксплуатации объектов различного назначения. Например, в Швеции строительство подземных сооружений для хранения нефти и нефтепродуктов объемом более 100 тыс. м 3 более экономично, чем наземных, так как при этом потребление энергии на отопление снижается в 3 раза и на охлаждение в 10 раз.

Экодомом называют автономный малоэтажный дом, в котором в максимально возможной степени используются природные процессы для обеспечения его жизнедеятельности, включая энергообеспечение и переработку всех видов отходов.

В случае если здание вносит определенные помехи в круговорот веществ и энергии, но в целом обеспечивает благоприятную для человека внутреннюю среду, необходимую связь с окружающим ландшафтом, максимально использует тепловую энергию, его называют экологичным (Тетиор, 1991). Различают следующие их виды: энергосберегающие, гелиоэнергоактивные, биоэнергоактивные, ветроэнергоактивные и др.

Экодом ¾ своеобразная экологическая антропогенная экосистема, биологически активный объект. Он включает в себя и окружающий участок ландшафта, в пределах которого осуществляется полная утилизация отходов и повышается биологическая активность почвы.

Главное отличие экодома от традиционного дома ¾ это наличие в нем систем жизнеобеспечения, организованных по принципу экосистем, и независимость от городских сетей аналогичного назначения. При этом экодом не является полностью замкнутой искусственной экосистемой, подобно создаваемым ранее в США системам, стимулированным космическими программами и оказавшимися непригодными для длительного пребывания в них человека из-за ухудшения микробиологического состава внутренней среды. Экодом ¾ это открытая система, тесно связанная с окружающей природной средой и образующая с ней единую экологическую систему (рис. 21.4).

Рис. 21.4. Проектное предложение по созданию экологически чистого дома
(по В. И. Белоусову, 1998)

Экологически чистый энергоэффективный жилой дом разработан сотрудниками НПО «Инсолар» совместно с американской фирмой «Peace Ecology» (АВОК, 1994, № 1-2). Теплоснабжение, горячее водоснабжение и кондиционирование осуществляются в нем с помощью нетрадиционных источников энергии. По сравнению с традиционными аналогами существующее инженерное оборудование позволяет снизить затраты энергии на эксплуатацию на 60-70%. В качестве источников низкопотенциального тепла для испарителей теплонасосных установок АНТУ-10 и ТУГВ-200 используется грунт поверхностных слоев и вентиляционные выбросы. Площадь застройки 260 м 2 , число этажей ¾ 3, высота комнат ¾ 3 м.

По А. В. Аврорину (1999), основные преимущества экодома в энергосбережении и сохранении окружающей среды в сравнении с обычными малоэтажными домами следующие:

¨ отсутствие дорогостоящих централизованных коммуникаций теплоснабжения и канализации. Использование при необходимости автономных электрогенераторов и артезианских вод (при их наличии);

¨ эффективное энергосбережение за счет высокой степени теплоизоляции ограждающих конструкций. Сбережение энергии при вентиляции и кондиционировании;

¨ непременное использование солнечной энергии для обогрева дома и получения горячей воды. В лучших конструктивных образцах экодомов за счет этого источника получают до 80% энергии;

¨ освещение экодома, как правило, электрическое с использованием экономичных источников света: галогенных и люминесцентных ламп, которые могут работать и от солнечных батарей;

¨ утилизация с помощью биореакторов всех видов органических отходов, которые перерабатываются в компост и затем используются в теплице и на приусадебном участке в качестве естественного удобрения. Таким образом культивируются биоинтенсивные системы земледелия без использования химикатов и удобрений извне, при этом биологическая активность почвы увеличивается;

¨ уменьшение экологической нагрузки на окружающую среду с помощью экономии материальных ресурсов, использование щадящих природу ресурсосберегающих строительных и возобновляемых материалов;

¨ использование в архитектуре экодома энергосберегающих и эстетических принципов, соответствующих историческим, национальным и культурным особенностям его обитателей и территории.

Этим перечнем далеко не исчерпываются все экологические преимущества экодомов. Помимо решения проблем энергосбережения и ряда других экологическую привлекательность им могут придавать:

¨ применение только природных (преимущественно местных) строительных материалов с пониженной эмиссией летучих компонентов;

¨ консервация дождевой воды, очистка воды с помощью локальных очистных сооружений;

¨ биопозитивность дома (озеленение крыши, фасада и балконов, декор дома и др.);

¨ автоматизация экологического контроля за взаимодействием экодома и окружающей природной средой.

Создание энергосберегающих экодомов в мире активно практикуется с начала 70-х гг. и, несмотря на все препятствия, их количество неуклонно растет. Так, например, в Германии число энергопассивных , т. е. с нулевым теплопотреблением, домов превысило одну тысячу, а количество домов с низким теплопотреблением исчисляется многими тысячами.

В Швеции построены сотни экодомов особой конструкции, с замкнутым циклом водо- и энергоснабжения и специальным биореактором по переработке органических отходов. Активно используются альтернативные источники энергии: солнечные батареи, ветрогенераторы, генераторы биогаза.

Экодома такого типа начинают строить и в России. Например, по данным Е. и М. Кондрашовых (2001), в настоящее время проектируется строительство экопоселения в Тамбовской области. В состав экодомов будут входить зимние сады, теплицы, ориентированные на юг солнечные коллекторы, тепловые аккумуляторы, генераторы биогаза и т. д. Авторы полагают, что по теплозащитным и экологическим показателям подходящим материалом для возведения стен одноэтажных зданий будет глино-соломенная смесь. Интересно, что в Швеции и США до сих пор стоят дома, построенные из соломенных тюков еще в XIX в.

Идея создания экодомов с использованием природных циклов жизнеобеспечения весьма обнадеживает, ибо, на наш взгляд, это не только экономия энергоресурсов и внедрение нетрадиционных возобновимых источников энергии, не только реализация энергосберегающего образа жизни, но, главное, впечатляющий пример «во всех отношениях безопасного и достойного сосуществования людей и окружающей природы». Остается надеяться, что удачные образцы экодомов будут стимулировать развитие массового экологического энергосберегающего домостроения в нашей стране.

Понятие устойчивого развития включает в себя как обязательный компонент постепенный переход от энергетики, основанной на сжигании органического топлива (нефть, уголь, газ и др.), к нетрадиционной (альтернативной) энергетике, использующей возобновляемые экологически чистые источники энергии ¾ солнце, ветер, энергию биомассы, подземное тепло и др. (рис. 21.5).

Рис. 21.5. Классификация возобновляемых источников энергии
(Энергоактивные здания, 1988, с изм.)

В послании международной экологической организации Гринпис правительствам всех стран отмечается, что «правительства должны признать, что углеводородное топливо ¾ основная причина изменения климата и что единственной стабильной системой энергоснабжения, способной отвечать нашим энергетическим потребностям, может быть система, основанная на возобновляемых источниках энергии».

Основные преимущества возобновляемых источников энергии хорошо известны: практическая неисчерпаемость запасов (рис. 21.5) и относительная экологическая безвредность, в связи с отсутствием побочных эффектов, загрязняющих природную среду. Сдерживает их развитие недостаточный на сегодняшний день технический уровень индустриальных методов использования.

В жилищно-строительной сфере, как и во всех других видах человеческой деятельности, использование нетрадиционных возобновляемых источников энергии получило широкое развитие.

Энергия Солнца . В современной мировой практике энергоснабжения излучение Солнца ¾ возможно, главный нетрадиционный источник энергии. Появилась новая отрасль энергетики ¾ гелиоэнергетика , созданы специальные энергетические установки ¾ гелиосистемы.

«Ливень» солнечной энергии неисчерпаем. Лишь незначительная часть излучения Солнца (0,02%) попадает в биосферу Земли, но и этого количества энергии достаточно, чтобы в тысячи раз перекрыть общую мощность всех электростанций мира.

К недостаткам солнечной энергии относят дискретность (прерывистость) ее поступления на поверхность Земли (по часам суток, времени года, географическим поясам) и зависимость от метеорологических условий. Например, в России специалисты рекомендуют размещать гелиополигоны южнее 55° с. ш. В связи с этим многие зарубежные ученые работают над проблемой выноса гелиосистем на околоземную орбиту. Предполагается строительство в Европе 40 спутниковых солнечных электростанций , способных обеспечить около 20% потребности в электроэнергии. Однако не исключено, что солнечные электростанции могут причинить ущерб окружающей среде в процессе передачи энергии на Землю (А. И. Мелуа и др., 1988).

Существует два основных направления использования солнечной энергии: выработка электрической энергии и получение тепловой энергии (теплоснабжение). Применение солнечных электрогенераторов находится все еще в начальной стадии, зато использование солнечного теплоснабжения для обогрева жилых зданий занимает в мировой практике уже значительное место.

Так, в США в 1977 г. насчитывалось около 1000 солнечных домов, в 90-е гг. число их превысило 15 тыс. Солнечные установки для подогрева воды имеют 90% домов на Кипре и 70% в Израиле. Только за последние 15 лет в Японии построены сотни тысяч зданий с солнечным подогревом, что позволило резко уменьшить выбросы в атмосферу диоксида углерода и других парниковых газов.

Солнечная энергетика в России развита совершенно недостаточно, хотя половина ее территории находится в благоприятных для использования солнечной энергии условиях ¾ в год ее поступает не менее 100 кВт ч/м 2 , а в таких районах, как Дагестан, Бурятия, Приморье, Астраханская область и др. ¾ до 200 кВт ч/м 2 (Стребков, 1993).

Солнечная энергия очень удобна для энергоснабжения зданий. Как показали экспериментальные исследования, только за счет энергии солнечных лучей, падающих на ограждающие конструкции зданий, можно полностью решить энергетические проблемы, связанные с их обогревом, горячим водоснабжением и др.

Существует три вида гелиосистем, служащих для удовлетворения тепловых нужд здания: пассивные, активные и смешанные (Швецов, 1994).

В пассивных гелиосистемах само здание служит приемником и преобразователем солнечной энергии, а распределение тепла осуществляется за счет конвенции.

Основным элементом более дорогостоящей активной гелиосистемы является коллектор ¾ приемник солнечной энергии, где солнечный свет преобразуется в тепло. Гелиоколлектор представляет собой теплоизолированный ящик: видимый свет от солнца проходит сквозь прозрачное покрытие (стекло или пленку), попадает на зачерненную панель и нагревает ее. При специальной конструкции коллектора внутри его достигается очень высокая температура, позволяющая успешно осуществлять горячее водоснабжение.

Оценивая эффективность применения солнечного теплоснабжения в нашей стране, Н. Пинигин и А. Александров (1990) показали, что использование солнечных установок в режиме круглогодичного горячего водоснабжения зданий экономически целесообразно практически для всей южной части Российской Федерации.

В последние годы созданы установки с сезонным аккумулированием тепла, что позволяет даже в условиях Сибири сохранить до 30% топливных ресурсов и использовать их для обогрева небольших домов в зимний период. Необходимы дальнейшие поиски использования солнечной энергии не только в южных, но и в северных районах России, особенно учитывая, что в Норвегии и Финляндии такой опыт уже имеется.

Использование солнечной энергии в жилищно-строительной сфере не ограничивается только теплоснабжением жилых зданий. Так, АО «ПИ-2» разработало серию проектов гелиополигонов (стационарных и мобильных, сезонных и круглогодичного действия), в которых впервые в мире для термовлажностной обработки сборных железобетонных конструкций и изделий была использована солнечная энергия без промежуточных превращений (Великолепов, 1995) (рис. 21.6). После укладки гелиопокрытия (СВИТАП) железобетонное изделие превращается в аккумулятор тепла, после чего начинает действовать другой источник тепла ¾ экзотермия цемента.

Рис. 21.6. Общий вид и технологическая схема гелиополигона круглогодичного действия:
1 ¾ гелиокамеры; 2 ¾ форма на колесах; 3 ¾ СВИТАП; 4 ¾ запирающий щит;
5
¾ инфракрасные излучатели; 6 ¾ механизм передвижения форм; 7 ¾ производственный корпус с БСЦ;
8
¾ бетоновозная эстакада; 9 ¾ склад арматурных каркасов; 10 ¾ бетоноукладчик;
11
¾ склад готовой продукции с зоной дозревания; 12 ¾ козловой кран

Строительство таких гелиополигонов позволяет: сократить объемы строительно-монтажных работ, повысить долговечность и качество изделия, снизить его стоимость, отказаться от котельной, теплотрасс, пропарочных камер, уменьшить нагрузку на окружающую среду и, главное, экономить условное топливо. По мнению авторов проекта, необходимо пересмотреть способы производства сборного железобетона и создать условия для широкого внедрения энергосберегающих технологий, использующих солнечную энергию.

В заключение приведем высказывание лауреата Нобелевской премии Жореса Алферова (2001) по поводу использования солнечной энергии: «Солнце ¾ это термоядерный реактор, который работает миллионы лет надежно и безопасно. И задача преобразования солнечной энергии в электрическую будет решена. Может быть, даже в нашем ХХI веке. Академик Иоффе мечтал о солнечной энергетике и ее широком применении, когда КПД солнечных преобразований равнялся 0,1%. Сегодня КПД солнечных преобразований на гетероструктурах достиг 35%. Да, это по-прежнему дороже, чем атомная энергетика. Но дороже не на порядок, а лишь в несколько раз. И хочется верить, что лет через пятнадцать – двадцать солнечная энергетика будет сравнима или даже обойдет другие виды».

Завораживающей сознание выглядит идея, предложенная японскими специалистами, о строительстве единой для всей планеты гигантской солнечной электростанции где-нибудь в Сахаре или пустынях Австралии. Для этой станции потребовалась бы площадь, эквивалентная квадрату со стороной 800 км. Но уже сейчас суммарная площадь солнечных отражателей, используемых в мировой практике, превышает 6 млрд м 2 (США ¾ 1,8 млрд м 2 , Япония ¾ 1,3 млрд м 2 и т. д.).

Энергия ветра. Направление энергетики, связанное с ветровой энергией, называют ветроэнергетикой , а здания, в которых энергия ветра преобразуется в электрическую, тепловую и другие виды энергии, ¾ ветроэнергоактивными .

Ветроэнергетика становится рентабельной при средних скоростях ветра от 3 до 10 м/с при повторяемости около 60-90% и, следовательно, может использоваться лишь в районах с постоянным ветром (Крайний Север, побережье Охотского моря, Камчатка, Курилы, Прикаспийская низменность и др.).

В ветроэнергоактивном здании энергия ветра преобразуется с помощью ветрового колеса, размещенного в здании. Основным рабочим органом является ротор, который вращает генератор.

По А. Н. Тетиору (1991), важной экологической проблемой является защита здания и жителей от механических колебаний, генерируемых ветроустановкой. Применение различных способов виброизоляции, включая размещение ветроэнергетических установок вне жилых зданий, приводит к удорожанию их строительства. Значительным недостатком ветроэлектростанции является также генерация ими инфразвукового шума.

И, тем не менее, ветроэнергетика имеет большое будущее. За последние 20 лет она прошла путь от небольших агрегатов до современной многомиллиардной отрасли, обеспечивающей большое количество энергосистем. В 2001 г. ветротурбины, мощность которых составляла 14 000 МВт, генерировали «чистую» электроэнергию в более чем 30 странах мира. Только в США работает 9000 ветровых электроустановок, в Дании ¾ 1500. По данным Европейской ассоциации ветровой энергии, к 2020 г. ветровые электростанции обеспечат 10% мировой потребности в электроэнергии.

Геотермальная энергия. На территории СНГ запасы еще одного нетрадиционного источника энергии ¾ геотермального тепла , оцениваются в десятки миллионов тонн условного топлива. Идея использования тепла Земли как альтернативного энергоресурса не нова. Еще в 20-е гг. ХХ в. К. Э. Циолковский и В. А. Обручев считали возможным использование геотермального тепла. К началу ХХI в. мощность энергии геотермальных систем в мире превысила 16 млн кВт ч, что достаточно для обогрева многих тысяч квартир. Исландия полностью отказалась от использования органического топлива, и широко использует геотермальные воды.

Наиболее экономически выгодный вариант использования геотермального тепла ¾ строительство ГЭС с использованием водяного пара (температурой 200-400 °С). К сожалению, месторождения термального пара в России, да и в мире, редки, поэтому основное применение находят геотермальные (теплоэнергетичекие) воды с температурой до 200 °С, выходящие на поверхность земли в виде источников. Достаточно упомянуть в связи с этим Паужетскую гидротермальную станцию, построенную в 1967 г. на Камчатке.

Перспективным направлением в энергосбережении специалисты считают извлечение тепловой энергии из водонасыщенных пластов, залегающих на глубинах 2-3 км и имеющих температуру 150-200 °С. На выбранной площадке бурятся вертикальные и наклонные нагнетательные скважины, по которым закачивается теплоноситель, который прогревается горячими породами, а затем откачивается. Подобная теплоэнергетическая система называется циркуляционной и ее применение вполне целесообразно во многих районах СНГ (Северный Кавказ, Крым, Армения, Закарпатье и др.). Первая в России термоциркуляционная система действовала в г. Грозном, где вода после использования в теплицах нагнеталась на глубину 1 км, там она вновь нагревалась.

Энергия биомассы . Биомасса ¾ это выраженное в единицах массы количество живого вещества организмов, приходящееся на единицу площади или объема. В процессе переработки она преобразуется в органические отходы и биогаз.

В настоящее время биомасса широко используется в качестве топлива, что является результатом постоянных усилий ученых и специалистов по созданию экологически чистой энергии и предотвращению выбросов загрязняющих веществ в атмосферу.

В энергетических целях биомассу либо сжигают, используя теплоту сгорания (в этом случае продукты пиролиза могут загрязнять атмосферу), либо перерабатывают путем анаэробного сбраживания с целью получения биогаза (рис. 21.7). Биогаз, состоящий на 60-70% из метана и на 20-40% из углекислого газа, получают в специальных установках, основной частью которых является реактор (метантенк), т. е. бродильная камера, в которую загружают биомассу.

Рис. 21.7. Принципиальная схема переработки ТБО методом
анаэробного компостирования для получения биогаза:
1 ¾ приемный бункер; 2 ¾ мостовой грейферный кран; 3 ¾ дробилка; 4 ¾ магнитный сепаратор;
5
¾ насос-смеситель; 6 ¾ метантенк; 7 ¾ шнековый пресс; 8 ¾ рыхлитель; 9 ¾ емкость для сбора
отжима; 10
¾ цилиндрический грохот; 11 ¾ упаковочная машина; 12 ¾ крупный отсев;
13
¾ склад удобрений; 14 ¾ газголдер; 15 ¾ компрессор; 16 ¾ уравнительная касера; I ¾ направление
движения отходов; II
¾ направление движения биогаза

Материалом для переработки на биогазовых установках служат твердые бытовые отходы, навоз, отходы деревообработки (кора, опилки, стружки), осадки биологических очистных устройств и др.

С экологической точки зрения укажем на некоторые отличительные особенности использования этого энергетического направления:

1) биотехнологическая трансформация биомассы в энергию считается абсолютно безвредной;

2) в отличие от традиционных источников энергии данный метод не загрязняет окружающую среду;

3) вырабатывается не только энергия, но и одновременно природная среда очищается (освобождается) от продуктов жизнедеятельности и других отходов.

После очищения от углекислого газа и сероводорода биогаз сжигают и используют в стандартных водонагревателях, газовых плитах, горелках и других приборах.

В строительной сфере биогаз, как показывает мировой опыт, широко используется как источник экологически чистой энергии при производстве многих строительных материалов: гипса, стекла, керамзита и др. Доказано также, что при сухом способе производства цемента экологически и экономически выгоднее во вращающихся обжиговых печах использовать не традиционные источники энергии, а биогаз.

К нетрадиционным возобновляемым источникам энергии относят также энергию приливов, энергию ветровых волн, тепловые насосы, энергию температурных колебаний различных слоев морской воды и т. д.

Перспективным методом использования нетрадиционных источников энергии считается объединение ряда зданий в единую энергосистему в виде гелио- и ветрогелиокомплексов, а также ветроэнергоактивных комплексов, дополненных тепловыми насосами для трех сред (Селиванов, 1993). Эксплуатация подобных жилищно-энергетических комплексов позволит не только экономить невозобновляемые источники энергии, но и исключить или свести к минимуму вредное воздействие энергетики на окружающую среду.

Одним из важнейших критериев пригодности техногенного сырья для производства строительных материалов и для других целей является токсичность и радиоактивность , т. е. степень его экологической чистоты. Использовать промышленные отходы в качестве вторичного сырья возможно лишь после разработки специальных нормативных документов на их применение. В случае соответствия отходов требованиям санитарных правил и норм радиационной безопасности они могут быть рекомендованы для практического применения.

В 1987 г. разработаны «Временный классификатор токсичных промышленных отходов» (№ 4286-87) и «Методические рекомендации по определению класса токсичности промышленных отходов», которыми надлежит пользоваться при оценке экологической безопасности техногенного сырья.

Для обеспечения экологической надежности вторичных сырьевых ресурсов выполняют необходимые лабораторные исследования, сравнивая состав исходного сырья с ПДК токсичных веществ. Шкала экологической безопасности и кондиционности техногенного сырья предусматривает полное отсутствие в нем органических канцерогенных веществ, не превышение ПДК таких элементов, как бериллий, таллий, селен, хром и ряда других экологически небезвредных, например, хлора, фтора, брома, серы и др. Особую опасность представляет наличие в техногенном сырье тяжелых металлов меди, титана, молибдена, ванадия и др.

В. Мымриным (1996) разработана технология, позволяющая получать высокоэффективные нетоксичные дорожно-строительные материалы при смешивании 2-3 видов техногенного сырья, представленных золошлаками, различными видами шлаков черной металлургии, отходами химического производства и др. По утверждению автора предлагаемой технологии, все опасные элементы промышленных отходов в данном случае химически связываются в нерастворимые соединения, что было установлено при испытаниях в кислых, щелочных и нейтральных средах.

Для обеспечения экологической безопасности применяемых в строительной индустрии вторичных сырьевых ресурсов в обязательном порядке предусматривается их радиоэкологическая оценка. В техногенном сырье, предназначенном для использования в качестве строительного материала, не должно быть каких-либо радиоактивных изотопов, например, радия, тория, стронция и цезия, или повышенного уровня излучений.

Это тем более необходимо, что многие виды промышленных отходов имеют повышенную удельную эффективную активность радионуклидов А эфф. Так, например, по данным Центра радиационной экологии Ростовского госуниверситета, 5% золоотвалов Новочеркасской ГРЭС имеют А эфф. > 370 Бк/кг, т. е. выше норм, установленных НРБ-96. Согласно ГОСТ 30108-94 золоотвалы с повышенной радиоактивностью могут использоваться в строительстве только после тщательных радиологических анализов и выбраковке золошлаков с активностью, превышающей нормативы.

Радиационно опасные промышленные отходы можно применять лишь в тех видах строительства, где контакт человека с ними опосредован и непродолжителен. Это означает, что высокоактивные отходы могут быть использованы например, в дорожном строительстве, но не могут без дополнительной обработки с целью удаления радиоактивных веществ быть использованы в жилищном строительстве.

1. Почему энергоснабжение является мощным экологическим ресурсом и магистральным путем устойчивого развития?

2. Каковы основные направления экологического энергопотребления в жилищно-строительной сфере?

3. Что такое альтернативные экологически чистые источники энергии? Какое применение они находят в жилищно-строительной сфере?

4. Что такое энергосберегающий экодом?

5. Можно ли сберегать энергоресурсы с помощью строительства заглубленных зданий?

6. Какова роль техногенного сырья в ресурсосбережении природных строительных материалов?

7. Что понимается под экологической безопасностью техногенного сырья?