Планирование Мотивация Управление

Электронный микроскоп. Цифровые микроскопы. Устройство электронных микроскопов

Мы начинаем публиковать блог предпринимателя, специалиста в области информационных технологий и по совместительству конструктора-любителя Алексея Брагина, в котором рассказывается о необычном опыте - вот уже год как автор блога занят восстановлением сложного научного оборудования - сканирующего электронного микроскопа - практически в домашних условиях. Читайте о том, с какими инженерно-техническими и научными задачами пришлось столкнуться Алексею и как он с ними справился.

Позвонил мне как-то друг и говорит: нашел интересную штуку, надо привезти к тебе, правда, весит полтонны. Так у меня в гараже появилась колонна от сканирующего электронного микроскопа JEOL JSM-50A. Ее давно списали из какого-то НИИ и вывезли в металлолом. Электронику потеряли, а вот электронно-оптическую колонну вместе с вакуумной частью удалось спасти.

Раз основная часть оборудования сохранилась, возник вопрос: нельзя ли спасти микроскоп целиком, то есть восстановить и привести его в рабочее состояние? Причем прямо в гараже, собственными руками, с помощью лишь базовых инженерно-технических знаний и подручных средств? Правда, прежде я никогда не имел дела с подобным научным оборудованием, не говоря уже о том, чтобы уметь им пользоваться, и не представлял, как оно работает. Но интересно ведь не просто запустить старую железяку в рабочее состояние - интересно во всем самостоятельно разобраться и проверить, возможно ли, используя научный метод, освоить совершенно новые области. Так я стал восстанавливать электронный микроскоп в гараже.

В этом блоге я буду рассказывать вам о том, что мне уже удалось сделать и что еще предстоит. Попутно я познакомлю вас с принципами функционирования электронных микроскопов и их основных узлов, а также расскажу о множестве технических препятствий, которые пришлось преодолеть по ходу работы. Итак, приступим.

Чтобы восстановить оказавшийся у меня микроскоп хотя бы до состояния «рисуем электронным лучом на люминесцентном экране», необходимо было следующее:

  • понять основы работы электронных микроскопов;
  • разобраться в том, что такое вакуум и какой он бывает;
  • как измеряют вакуум и как его получают;
  • как работают высоковакуумные насосы;
  • минимально разобраться в прикладной химии (какие растворители использовать для очистки вакуумной камеры, какое масло    использовать для смазки вакуумных деталей);
  • освоить металлообработку (токарные и фрезерные работы) для изготовления всевозможных переходников и инструментов;
  • разобраться с микроконтроллерами и схемотехникой их подключения.

  • Начнем по порядку. Сегодня я расскажу о принципах работы электронных микроскопов. Они бывают двух типов:

  • просвечивающий - TEM, или ПЭМ;
  • сканирующий - SEM, или РЭМ (от «растровый»).
  • Просвечивающий электронный микроскоп

    ПЭМ очень похож на обычный оптический микроскоп, только исследуемый образец облучается не светом (фотонами), а электронами. Длина волны электронного луча намного меньше, чем фотонного, поэтому можно получить существенно большее разрешение.

    Фокусировка электронного луча и управление им осуществляются с помощью электромагнитных или электростатических линз. Им даже присущи те же искажения (хроматические аберрации), что и оптическим линзам, хотя природа физического взаимодействия тут совершенно иная. Она, кстати, добавляет еще и новых искажений (вызванных закручиванием электронов в линзе вдоль оси электронного пучка, чего не происходит с фотонами в оптическом микроскопе).

    У ПЭМ есть недостатки: исследуемые образцы должны быть очень тонкие, тоньше 1 микрона, что не всегда удобно, особенно при работе в домашних условиях. Например, чтобы посмотреть свой волос на просвет, его необходимо разрезать вдоль хотя бы на 50 слоев. Это связано с тем, что проникающая способность электронного луча гораздо хуже фотонного. К тому же ПЭМ, за редким исключением, достаточно громоздки. Вот этот аппарат, изображенный ниже, вроде бы и не такой большой (хотя он выше человеческого роста и имеет цельную чугунную станину), но к нему еще прилагается блок питания размером с большой шкаф - итого необходима почти целая комната.


    Зато разрешение у ПЭМ - наивысшее. С его помощью (если сильно постараться) можно увидеть отдельные атомы вещества.


    University of Calgary


    Такое разрешение бывает особенно полезно для идентификации возбудителя вирусного заболевания. Вся вирусная аналитика ХХ века была построена на базе ПЭМ, и только с появлением более дешевых методов диагностики популярных вирусов (например, полимеразной цепной реакции, или ПЦР) рутинное использование ПЭМов для этой цели прекратилось.

    Например, вот как выглядит грипп H1N1 «на просвет»:


    University of Calgary


    Сканирующий электронный микроскоп


    SEM применяется в основном для исследования поверхности образцов с очень высоким разрешением (увеличение в миллион крат, против 2 тысяч у оптических микроскопов). А это уже гораздо полезнее в домашнем хозяйстве:)

    К примеру, так выглядит отдельная щетинка новой зубной щетки:

    То же самое должно происходить и в электронно-оптической колонне микроскопа, только тут облучается образец, а не люминофор экрана, и изображение формируется на основе информации с датчиков, фиксирующих вторичные электроны, упруго-отраженные электроны и прочее. Об электронном микроскопе именно этого типа и пойдет речь в этом блоге.

    И кинескоп телевизора, и электронно-оптическая колонна микроскопа работают только под вакуумом. Но об этом я расскажу подробно в следующем выпуске.

    (Продолжение следует)

    Термин «микроскоп» имеет греческие корни. Он состоит из двух слов, которые в переводе означают «маленький» и «смотрю». Основная роль микроскопа заключается в его применении при рассмотрении весьма малых объектов. При этом данный прибор позволяет определить размеры и форму, строение и иные характеристики невидимых невооруженным глазом тел.

    История создания

    Точных сведений о том, кто являлся изобретателем микроскопа, в истории нет. По одним данным, его в 1590 г. сконструировали отец и сын Янссены, мастера по изготовлению очков. Еще один претендент на звание изобретателя микроскопа - Галилео Галилей. В 1609 г. этим ученым был представлен прибор с вогнутой и выпуклой линзами на обозрение публики в Академии деи Линчеи.

    С годами система для рассмотрения микроскопических объектов развивалась и совершенствовалась. Огромным шагом в ее истории стало изобретение простого ахроматически регулировавшегося двухлинзового устройства. Представил эту систему голландец Кристиан Гюйгенс в конце 1600-х годов. Окуляры данного изобретателя находятся в производстве и сегодня. Единственным их минусом является недостаточная широта поля обзора. Кроме того, по сравнению с устройством современных приборов окуляры Гюйгенса имеют неудобное расположение для глаз.

    Особый вклад в историю микроскопа внес изготовитель подобных приборов Антон Ван Левенгук (1632-1723 гг.). Именно он привлек внимание биологов к этому устройству. Левенгук изготавливал небольшие по размеру изделия, оснащенные одной, но весьма сильной линзой. Использовать такие приборы было неудобно, но они не удваивали дефекты изображений, что присутствовало в составных микроскопах. Исправить этот недостаток изобретатели смогли только спустя 150 лет. Вместе с развитием оптики улучшилось качество изображения в составных приборах.

    Совершенствование микроскопов продолжается и в наши дни. Так, в 2006 г. немецкими учеными, работающими в институте биофизической химии, Мариано Босси и Штефаном Хеллем, был разработан новейший оптический микроскоп. Из-за возможности наблюдать предметы с размерами в 10 нм и трехмерные высококачественные 3D-изображения прибор назвали наноскопом.

    Классификация микроскопов

    В настоящее время существует большое разнообразие приборов, предназначенных для рассмотрения малых по величине объектов. Их группирование производится исходя из различных параметров. Это может быть назначение микроскопа или принятый способ освещения, строение, использованное для оптической схемы и т. д.

    Но, как правило, основные виды микроскопов классифицируются по величине разрешения микрочастиц, которые можно увидеть при помощи данной системы. Согласно такому делению, микроскопы бывают:
    - оптическими (световыми);
    - электронными;
    - рентгеновскими;
    - сканирующими зондовыми.

    Наибольшее распространение получили микроскопы светового типа. Их богатый выбор имеется в магазинах оптики. При помощи подобных приборов решаются основные задачи по исследованию того или иного объекта. Все другие виды микроскопов относят к специализированным. Их использование производится, как правило, в условиях лаборатории.

    Каждый из вышеперечисленных видов приборов имеет свои подвиды, которые применяются в той или иной сфере. Кроме того, сегодня есть возможность купить школьный микроскоп (или учебный), который является системой начального уровня. Предлагаются потребителям и профессиональные приборы.

    Применение

    Для чего нужен микроскоп? Человеческий глаз, будучи особой оптической системой биологического типа, имеет определенный уровень разрешения. Другими словами, существует наименьшее расстояние между наблюдаемыми объектами, когда их еще можно различить. Для нормального глаза такое разрешение находится в пределах 0,176 мм. А вот размеры большинства животных и растительных клеток, микроорганизмов, кристаллов, микроструктуры сплавов, металлов и т. п. намного меньше этой величины. Каким же образом изучать и наблюдать подобные объекты? Вот здесь на помощь людям и приходят различные виды микроскопов. К примеру, приборы оптического типа позволяют различить структуры, у которых расстояние между элементами составляет минимум 0,20 мкм.

    Как устроен микроскоп?

    Прибор, с помощью которого человеческому глазу становится доступным рассмотрение микроскопических объектов, имеет два основных элемента. Ими являются объектив и окуляр. Закреплены данные части микроскопа в подвижном тубусе, располагающемся на металлическом основании. На нем же имеется и предметный столик.

    Современные виды микроскопов, как правило, оснащены осветительной системой. Это, в частности, конденсор, имеющий ирисовую диафрагму. Обязательной комплектацией увеличительных приборов являются микро- и макровинты, которые служат для настройки резкости. В конструкции микроскопов предусматривается и наличие системы, управляющей положением конденсора.

    В специализированных, более сложных микроскопах нередко используются и иные дополнительные системы и устройства.

    Объективы

    Начать описание микроскопа хотелось бы с рассказа об одной из его основных частей, то есть с объектива. Они является сложной оптической системой, увеличивающей размеры рассматриваемого предмета в плоскости изображения. Конструкция объективов включает в себя целую систему не только одиночных, но и склеенных по две или три штуки линз.

    Сложность подобной оптико-механической конструкции зависит от круга тех задач, которые должны быть решены тем или иным прибором. Например, в самом сложном микроскопе предусматривается до четырнадцати линз.

    В составе объектива находятся фронтальная часть и системы, последующие за ней. Что является основой для построения изображения нужного качества, а также определения рабочего состояния? Это фронтальная линза или их система. Последующие части объектива необходимы для обеспечения требуемого увеличения, фокусного расстояния и качества изображения. Однако осуществление таких функций возможно только в сочетании с фронтальной линзой. Стоит сказать и о том, что конструкция последующей части влияет на длину тубуса и высоту объектива прибора.

    Окуляры

    Эти части микроскопа представляют собой оптическую систему, предназначенную для построения необходимого микроскопического изображения на поверхности сетчатки глаз наблюдателя. В составе окуляров находятся две группы линз. Ближайшая к глазу исследователя называется глазной, а дальняя - полевой (с ее помощью объектив выстраивает изображение изучаемого объекта).

    Осветительная система

    В микроскопе предусмотрена сложная конструкция из диафрагм, зеркал и линз. С ее помощью обеспечивается равномерная освещенность исследуемого объекта. В самых первых микроскопах данную функцию осуществляли По мере усовершенствования оптических приборов в них стали применять сначала плоские, а затем и вогнутые зеркала.

    С помощью таких нехитрых деталей лучи от солнца или лампы направлялись на объект исследования. В современных микроскопах более совершенна. Она состоит из конденсора и коллектора.

    Предметный столик

    Микроскопические препараты, требующие изучения, располагаются на плоской поверхности. Это и есть предметный столик. Различные виды микроскопов могут иметь данную поверхность, сконструированную таким образом, что объект исследования будет поворачиваться в наблюдателя по горизонтали, по вертикали или под определенным углом.

    Принцип действия

    В первом оптическом приборе система линз давала обратное изображение микрообъектов. Это позволяло разглядеть строение вещества и мельчайшие детали, которые подлежали изучению. Принцип действия светового микроскопа сегодня схож с той работой, которую осуществляет рефракторный телескоп. В этом приборе свет преломляется в момент прохождения через стеклянную часть.

    Как же увеличивают современные световые микроскопы? После попадания в прибор пучка световых лучей происходит их преобразование в параллельный поток. Только затем идет преломление света в окуляре, благодаря чему и увеличивается изображение микроскопических объектов. Далее эта информация поступает в нужном для наблюдателя виде в его

    Подвиды световых микроскопов

    Современные классифицируют:

    1. По классу сложности на исследовательский, рабочий и школьный микроскоп.
    2. По области применения на хирургические, биологические и технические.
    3. По видам микроскопии на приборы отраженного и проходящего света, фазового контакта, люминесцентные и поляризационные.
    4. По направлению светового потока на инвертированные и прямые.

    Электронные микроскопы

    С течением времени прибор, предназначенный для рассмотрения микроскопических объектов, становился все более совершенным. Появились такие виды микроскопов, в которых был использован совершенно иной, не зависящий от преломления света принцип работы. В процессе использования новейших типов приборов задействовали электроны. Подобные системы позволяют увидеть настолько малые отдельные части вещества, что их попросту обтекают световые лучи.

    Для чего нужен микроскоп электронного типа? С его помощью изучают структуру клеток на молекулярном и субклеточном уровнях. Также подобные приборы применяют для исследования вирусов.

    Устройство электронных микроскопов

    Что лежит в основе работы новейших приборов для рассмотрения микроскопических объектов? Чем электронный микроскоп отличается от светового? Есть ли между ними какие-либо сходства?

    Принцип работы электронного микроскопа основан на тех свойствах, которыми обладают электрические и магнитные поля. Их вращательная симметрия способна оказывать фокусирующее действие на электронные пучки. Исходя из этого, можно дать ответ на вопрос: «Чем электронный микроскоп отличается от светового?» В нем, в отличие от оптического прибора, нет линз. Их роль играют соответствующим образом рассчитанные магнитные и электрические поля. Создаются они витками катушек, через которые проходит ток. При этом такие поля действуют подобно При увеличении или уменьшении силы тока происходит изменение фокусного расстояния прибора.

    Что касается принципиальной схемы, то у электронного микроскопа она аналогична схеме светового прибора. Отличие заключено лишь в том, что оптические элементы замещены подобными им электрическими.

    Увеличение объекта в электронных микроскопах происходит за счет процесса преломления пучка света, проходящего сквозь исследуемый объект. Под различными углами лучи попадают в плоскость объективной линзы, где и происходит первое увеличение образца. Далее электроны проходят путь к промежуточной линзе. В ней происходит плавное изменение увеличения размеров объекта. Конечную картинку исследуемого материала дает проекционная линза. От нее изображение попадает на флуоресцентный экран.

    Виды электронных микроскопов

    Современные виды включают в себя:

    1. ПЭМ, или просвечивающий электронный микроскоп. В этой установке изображение очень тонкого, толщиной до 0,1 мкм, объекта формируется при взаимодействии пучка электронов с исследуемым веществом и с последующим его увеличением находящимися в объективе магнитными линзами.
    2. РЭМ, или растровый электронный микроскоп. Такой прибор позволяет получить изображение поверхности объекта с большим разрешением, составляющим порядка нескольких нанометров. При использовании дополнительных методов подобный микроскоп выдает информацию, помогающую определить химический состав приповерхностных слоев.
    3. Туннельный сканирующий электронный микроскоп, или СТМ. При помощи данного прибора измеряется рельеф проводящих поверхностей, имеющих высокое пространственное разрешение. В процессе работы с СТМ острую металлическую иглу подводят к изучаемому объекту. При этом выдерживается расстояние всего в несколько ангстрем. Далее на иглу подают небольшой потенциал, благодаря чему возникает туннельный ток. При этом наблюдатель получает трехмерное изображение исследуемого объекта.

    Микроскопы «Левенгук»

    В 2002 году в Америке появилась новая компания, занимающаяся производством оптических приборов. В ассортиментном перечне ее продукции находятся микроскопы, телескопы и бинокли. Все эти приборы отличает высокое качество изображения.

    Головной офис и отдел разработок компании располагаются в США, в городе Фримонде (Калифорния). А вот что касается производственных мощностей, то они находятся в Китае. Благодаря всему этому компания поставляет на рынок передовую и качественную продукцию по приемлемой цене.

    Вам нужен микроскоп? Levenhuk предложит необходимый вариант. В ассортименте оптической техники компании находятся цифровые и биологические приборы для увеличения изучаемого объекта. Кроме того, покупателю предлагаются и дизайнерские модели, исполненные в разнообразной цветовой гамме.

    Микроскоп Levenhuk обладает обширными функциональными возможностями. Например, учебный прибор начального уровня может быть присоединен к компьютеру, а также он способен выполнять видеосъемку проводимых исследований. Таким функционалом оснащена модель Levenhuk D2L.

    Компания предлагает биологические микроскопы различного уровня. Это и более простые модели, и новинки, которые подойдут профессионалам.

    Технологическая археология)
    Одни электронные микроскопы восстанавливают, другие прошивки космических аппаратов, третьи - занимаются реверс-инжинирингом схемотехники микросхем под микроскопом. Подозреваю, что занятие жутко увлекательное.
    А, к слову, вспомнил о чудесном посте об индустриальной археологии .

    Спойлер

    Корпоративная память бывает двух видов: люди и документация. Люди помнят, как вещи работают, и знают, почему. Иногда они записывают эту информацию куда-нибудь и хранят свои записи где-нибудь. Это называется «документация». Корпоративная амнезия действует точно так же: люди уходят, и документация исчезает, гниёт или просто забывается.

    Я провёл несколько десятилетий, работая в большой нефтехимической компании. В начале 1980-х мы спроектировали и построили завод, который переделывает одни углеводороды в другие углеводороды. За следующие 30 лет корпоративная память об этом заводе ослабла. Да, завод всё ещё работает и приносит фирме деньги; техобслуживание производится, и высокомудрые специалисты знают, что им надо подёргать и куда пнуть, чтобы завод продолжил работать.

    Но компания абсолютно забыла, как этот завод работает.

    Это произошло по вине нескольких факторов:

    Спад в нефтехимической промышленности в 1980-х и 1990-х заставил нас прекратить принимать на работу новых людей. В конце 1990-х, в нашей группе работали ребята в возрасте младше 35 или старше 55 - с очень редкими исключениями.
    Мы потихоньку перешли на проектирование с помощью компьютерных систем.
    Из-за корпоративных реорганизаций нам пришлось физически переезжать всем офисом с места на место.
    Корпоративное слияние несколькими годами позже полностью растворило нашу фирму в более крупной, вызвав глобальную перестройку отделов и перетасовку кадров.
    Индустриальная археология

    В начале 2000-х я и несколько моих коллег вышли на пенсию.

    В конце 2000-х компания вспомнила о заводе и подумала, что было бы неплохо сделать с ним что-нибудь. Скажем, увеличить производство. К примеру, можно найти узкое место в производственном процессе и улучшить его, - технология-то эти 30 лет не стояла на месте, - и, может быть, пристроить ещё один цех.

    И тут компания со всего маху впечатывается в кирпичную стену. Как этот завод был построен? Почему он был построен именно так, а не иначе? Как именно он работает? Для чего нужен чан А, зачем цеха Б и В соединены трубопроводом, почему трубопровод имеет диаметр именно Г, а не Д?

    Корпоративная амнезия в действии. Гигантские машины, построенные инопланетянами с помощью их инопланетной технологии, чавкают, как заведённые, выдавая на-гора груды полимеров. Компания примерно представляет себе, как обслуживать эти машины, но понятия не имеет, что за удивительное волшебство творится внутри, и ни у кого нет ни малейшего представления о том, как они создавались. В общем, народ даже не уверен, что именно надо искать, и не знает, с какой стороны следует распутывать этот клубок.

    Отыскиваются ребята, которые во время строительства этого завода уже работали в фирме. Теперь они занимают высокие должности и сидят в отдельных, кондиционированных кабинетах. Им дают задание найти документацию по означенному заводу. Это уже не корпоративная память, это больше похоже на индустриальную археологию. Никто не знает, какая документация по этому заводу существует, существует ли она вообще, и если да, то в каком виде она хранится, в каких форматах, что она в себя включает и где она лежит физически. Завод проектировался проектной группой, которой больше нет, в компании, которая с тех пор была поглощена, в офисе, который был закрыт, используя методы до-компьютерной эпохи, которые больше не применяются.

    Ребята вспоминают детство с обязательным копошением в грязи, закатывают рукава дорогих пиджаков и принимаются за работу.

    Электронная микроскопия - это метод исследования структур, находящихся вне пределов видимости светового микроскопа и имеющих размеры менее одного микрона (от 1 мк до 1-5 Å).

    Действие электронного микроскопа (рис.) основано на использовании направленного потока , который выполняет роль светового луча в световом микроскопе, а роль линз играют магниты (магнитные линзы).

    Вследствие того, что различные участки исследуемого объекта по-разному задерживают электроны, на экране электронного микроскопа получается черно-белое изображение изучаемого объекта, увеличенное в десятки и сотни тысяч раз. В биологии и медицине в основном используются электронные микроскопы просвечивающего типа.

    Электронная микроскопия возникла в 30-х годах, когда были получены первые изображения некоторых вирусов (вируса табачной мозаики и бактериофагов). В настоящее время электронная микроскопия нашла наиболее широкое применение в , и вирусологии, обусловив создание новых отраслей науки. При электронной микроскопии биологических объектов применяют специальные методы приготовления препаратов. Это необходимо для выявления отдельных компонентов изучаемых объектов (клетки, бактерии, вируса и т. д.), а также для сохранения их структуры в условиях высокого вакуума под пучком электронов. При помощи электронной микроскопии изучается внешняя форма объекта, молекулярная организация его поверхности, с помощью метода ультратонких срезов исследуется внутреннее строение объекта.

    Электронная микроскопия в сочетании с биохимическими, цитохимическими методами исследования, иммунофлюоресценцией, а также рентгеноструктурным анализом позволяют судить о составе и функции структурных элементов клеток и вирусов.

    Электронный микроскоп 70-х годов прошлого века

    Электронная микроскопия - изучение микроскопических объектов при помощи электронного микроскопа.

    Электронный микроскоп представляет электронно-оптический инструмент, обладающий разрешающей способностью в несколько ангстрем и позволяющий визуально изучать тонкое строение микроскопических структур и даже некоторых молекул.

    В качестве источника электронов для создания электронного пучка, заменяющего световой пучок, служит трехэлектродная пушка, состоящая из катода, управляющего электрода и анода (рис. 1).


    Рис. 1. Трехэлектродная пушка: 1 - катод; 2 - управляющий электрод; 3 - пучок электронов; 4 - анод.

    Электромагнитные линзы, применяемые в электронном микроскопе вместо оптических, представляют многослойные соленоиды, заключенные в панцири из магнитно-мягкого материала, имеющие на внутренней стороне немагнитный зазор (рис. 2).


    Рис. 2. Электромагнитная линза: 1 - полюсной наконечник; 2 - латунное кольцо; 3 - обмотка; 4 - панцирь.

    Электрические и магнитные поля, создаваемые в электронном микроскопе, являются аксиально симметричными. Благодаря действию этих полей заряженные частицы (электроны), выходящие из одной точки объекта в пределах небольшого угла, вновь собираются в плоскости изображения. Вся электронно-оптическая система заключена в колонне электронного микроскопа (рис. 3).

    Рис. 3. Электронно-оптическая система: 1 - управляющий электрод; 2 - диафрагма первого конденсатора; 3 - диафрагма второго конденсатора; 4 - стигматор второго конденсатора; 5 - объект; 6 - линза объектива; 7 - стигматор линзы объектива; 8 - стигматор промежуточной линзы; 9 - диафрагма проекционной линзы; 10 - катод; 11 - анод; 12 - первый конденсатор; 13 - второй конденсатор; 14 - корректор фокусировки; 15 - столик объектодержателя; 16 - диафрагма линзы объектива; 17 - селекторная диафрагма; 18 - промежуточная линза; 19 - проекционная линза; 20 - экран.

    Созданный электронной пушкой пучок электронов направляется в поле действия конденсорных линз, которые позволяют в широких пределах изменять плотность, диаметр и апертуру пучка, падающего на исследуемый объект. В камере объекта установлен столик, конструкция которого обеспечивает перемещение объекта во взаимно перпендикулярных направлениях. При этом можно последовательно осмотреть площадь, равную 4 мм 2 , и выбрать наиболее интересные участки.

    За камерой объекта расположена линза объектива, которая позволяет достигать резкого изображения объекта. Она же дает первое увеличенное изображение объекта, и с помощью последующих, промежуточной и проекционной, линз общее увеличение можно довести до максимального. Изображение объекта возникает на экране, люминесцирующем под действием электронов. За экраном расположены фотопластины. Стабильность действия электронной пушки, а также четкость изображения наряду с другими факторами (постоянство высокого напряжения и др.) во многом зависят от глубины разрежения в колонне электронного микроскопа, поэтому качество работы прибора в значительной степени определяется вакуумной системой (насосы, каналы откачки, краны, клапаны, уплотнения) (рис. 4). Необходимое разрежение внутри колонны достигается благодаря высокой эффективности вакуумных насосов.

    Предварительное разрежение во всей вакуумной системе создает механический форвакуумный насос, затем вступает в действие масляный диффузионный насос; оба насоса включены последовательно и обеспечивают в колонне микроскопа высокое разрежение. Введение в систему электронного микроскопа масляного бустерного насоса позволило на длительное время отключать форвакуумный насос.


    Рис. 4. Вакуумная схема электронного микроскопа: 1 - ловушка, охлаждаемая жидким азотом (хладопровод); 2 - высоковакуумный кран; 3 - диффузионный насос; 4 - обходной клапан; 5 - малый буферный баллон; 6 - бустерный насос; 7 - механический форвакуумный насос предварительного разрежения; 8 - четырехходовой клапанный кран; 9 - большой буферный баллон; 10 - колонна электронного микроскопа; 11 - клапан напуска воздуха в колонну микроскопа.

    Электрическая схема микроскопа состоит из источников высокого напряжения, накала катода, питания электромагнитных линз, а также системы, обеспечивающей переменным сетевым напряжением электродвигатель форвакуумного насоса, печь диффузионного насоса и освещение пульта управления. К питающему устройству предъявляются очень высокие требования: например, для высокоразрешающего электронного микроскопа степень нестабильности высокого напряжения не должна превышать 5·10 -6 за 30 сек.

    Интенсивный электронный пучок образуется в результате термоэмиссии. Источником накала катода, который представляет собой V-образную вольфрамовую нить, служит высокочастотный генератор. Генерируемое напряжение с частотой колебаний 100-200 кГц обеспечивает получение монохроматического электронного пучка. Питание линз электронного микроскопа обеспечивается постоянным высокостабилизированным током.


    Рис. 5. Электронный микроскоп УЭМВ-100Б для исследования живых микроорганизмов.

    Выпускаются приборы (рис. 5) с гарантированной разрешающей способностью 4,5 Å; на отдельных уникальных снимках получено разрешение 1,27 Å, приближающееся к размеру атома. Полезное увеличение при этом равно 200 000.

    Электронный микроскоп - прецезионный прибор, который требует особых методов приготовления препаратов. Биологические объекты малоконтрастны, поэтому приходится искусственно усиливать контраст препарата. Имеется несколько способов повышения контрастности препаратов. При оттенении препарата под углом платиной, вольфрамом, углеродом и т. д. становится возможным определять на электронномикроскопических снимках размеры по всем трем осям пространственной системы координат. При позитивном контрастировании препарат соединяется с водорастворимыми солями тяжелых металлов (уранилацетат, моноокись свинца, перманганат калия и др.). При негативном контрастировании препарат окружают тонким слоем аморфного вещества высокой плотности, непроницаемого для электронов (молибденовокислый аммоний, уранилацетат, фосфорно-вольфрамовая кислота и др.).

    Электронная микроскопия вирусов (вирусоскопия) обусловила значительный прогресс в изучении ультратонкой, субмолекулярной структуры вирусов (см.). Наряду с физическими, биохимическими и генетическими методами исследования применение электронной микроскопии способствовало также возникновению и развитию молекулярной биологии. Предметом изучения этого нового раздела биологии является субмикроскопическая организация и функционирование клеток человека, животных, растений, бактерий и микоплазм, а также организация риккетсий и вирусов (рис. 6). Вирусы, крупные молекулы белка и нуклеиновых кислот (РНК, ДНК), отдельные фрагменты клеток (например, молекулярное строение оболочки бактериальных клеток) можно исследовать при помощи электронного микроскопа после специальной обработки: оттенения металлом, позитивного или негативного контрастирования уранилацетатом или фосфорно-вольфрамовой кислотой, а также другими соединениями (рис. 7).

    Рис. 6. Клетка культуры ткани сердца обезьяны циномольгус, инфицированная вирусом натуральной оспы (X 12 000): 1 - ядро; 2 - митохондрии; 3 - цитоплазма; 4 - вирус.
    Рис. 7. Вирус гриппа (негативное контрастирование (Х450 000): 1 - оболочка; 2 - рибонуклеопротеид.

    Методом негативного контрастирования на поверхности многих вирусов были обнаружены закономерно расположенные группы белковых молекул - капсомеры (рис. 8).

    Рис. 8. Фрагмент поверхности капсида вируса герпеса. Видны отдельные капсомеры (X500 000): 1 - вид сбоку; 2 - вид сверху.
    Рис. 9. Ультратонкий срез бактерии Salmonella typhimurium (Х80 000): 1 - ядро; 2 - оболочка; 3 - цитоплазма.

    Внутреннее строение бактерий и вирусов, а также других более крупных биологических объектов можно изучать только после рассечения их при помощи ультратома и приготовления тончайших срезов толщиной 100-300 Å. (рис. 9). Благодаря улучшению методов фиксации, заливки и полимеризации биологических объектов, применению алмазных и стеклянных ножей при ультратомировании, а также использованию высококонтрастирующих соединений для окрашивания серийных срезов удалось получить ультратонкие срезы не только крупных, но и самых мелких вирусов человека, животных, растений и бактерий.

    Как же устроен электронный микроскоп? В чём его отличие от оптического микроскопа, существует ли между ними какая-нибудь аналогия?

    В основе работы электронного микроскопа лежит свойство неоднородных электрических и магнитных полей, обладающих вращательной симметрией, оказывать на электронные пучки фокусирующее действие. Таким образом, роль линз в электронном микроскопе играет совокупность соответствующим образом рассчитанных электрических и магнитных полей; соответствующие устройства, создающие эти поля, называют «электронными линзами».

    В зависимости от вида электронных линз электронные микроскопы делятся на магнитные, электростатические и комбинированные.

    Какого же типа объекты могут быть исследованы с помощью электронного микроскопа?

    Так же как и в случае оптического микроскопа объекты, во-первых, могут быть «самосветящимися», т. е. служить источником электронов. Это, например, накаленный катод или освещаемый фотоэлектронный катод. Во-вторых, могут быть использованы объекты, «прозрачные» для электронов, обладающих определённой скоростью. Иными словами, при работе на просвет объекты должны быть достаточно тонкими, а электроны достаточно быстрыми, чтобы они проходили сквозь объекты и поступали в систему электронных линз. Кроме того, путём использования отражённых электронных лучей могут быть изучены поверхности массивных объектов (в основном металлов и металлизированных образцов). Такой способ наблюдения аналогичен методам отражательной оптической микроскопии.

    По характеру исследования объектов электронные микроскопы разделяют на просвечивающие, отражательные, эмиссионные, растровые, теневые и зеркальные.

    Наиболее распространёнными в настоящее время являются электромагнитные микроскопы просвечивающего типа, в которых изображение создаётся электронами, проходящими сквозь объект наблюдения. Он состоит из следующих основных узлов: осветительной системы, камеры объекта, фокусирующей системы и блока регистрации конечного изображения, состоящего из фотокамеры и флуоресцирующего экрана. Все эти узлы соединены друг с другом, образуя так называемую колонну микроскопа, внутри которой поддерживается давление. Осветительная система обычно состоит из трёхэлектродной электронной пушки (катод, фокусирующий электрод, анод) и конденсорной линзы (речь идёт об электронных линзах). Она формирует пучок быстрых электронов нужного сечения и интенсивности и направляет его на исследуемый объект, находящийся в камере объектов. Пучок электронов, прошедший сквозь объект, поступает в фокусирующую (проекционную) систему, состоящую из объективной линзы и одной или нескольких проекционных линз.